

1994 Illinois Turfgrass Research Report

Horticulture Series 51 April 1995

Department of Horticulture and Agriculture Experiment Station • University of Illinois at Urbana-Champaign

This report was compiled and edited by Jean E. Haley, Senior Research Specialist, Department of Horticulture, University of Illinois.

> Cover design by Joan Zagorski, Graphic Designer, Office of Agricultural Communications and Education.

Papers in this research report are not for publication except with written permission of the author(s).

The University of Illinois is an affirmative action employer.

CONTENTS

Forewordi
Acknowledgementsiii
Understanding the Datavii
Turfgrass Cultivar Research Conducted by the University of Illinois,
Urbana, IL1
National Turfgrass Evaluation Program (NTEP)
Kentucky Bluegrass Cultivar Trial 1
J.E. Haley, T.B. Voigt, D.J. Wehner and T.W. Fermanian
NTEP Perennial Ryegrass Cultivar Trial7
J.E. Haley, T.B. Voigt, D.J. Wehner and T.W. Fermanian
NTEP Tall Fescue Cultivar Trial
J.E. Haley, T.B. Voigt, D.J. Wehner and T.W. Fermanian
NTEP Fine Fescue Cultivar Trial
J.E. Haley, T.W. Fermanian, T.B. Voigt and D.J. Wehner
1993 NTEP Bentgrass Evaluation
J.E. Haley, T.W. Fermanian, T.B. Voigt and D.J. Wehner
Buffalograss Cultivar Quality Evaluation
T.B. Voigt and J.E. Haley
1991 NTEP Zoysiagrass Cultivar Trials
T.B. Voigt and J.E. Haley
Cultivar Evaluation at Southern Illinois University, Carbondale, IL 30
NTEP Bentgrass Cultivar Trial
K.L. Diesburg
NTEP Tall Fescue Cultivar Trial
K.L. Diesburg
Low Input Sustainable Turf (LIST)
Turfances Management Evaluations at the University of Illinois
Turfgrass Management Evaluations at the University of Illinois
Tall Fescue Management
J.E. Haley and T.B. Voigt An Evaluation of Turf Quality and Home Owner Satisfaction Resulting
From Five Turf Management Programs
J.E. Haley, T.B. Voigt, W. C. Sullivan and Irene Miles
Turfgrass Evaluations at the Chicago Botanic Garden
K. Bilow, T.B. Voigt and R. Hawke
ALL DILOTT, LID, TOTAL WING IL ILUTING

CONTENTS

-

Observations of Low-Maintenance Grasses and Legumes Used for Erosion Control in a Woody Plant Nursery
Annual and Perennial Grass Control Research at the University of Illinois 50 Preemergence Crabgrass Control 50 J.E. Haley, T.W. Fermanian, and D.J. Wehner 50 Postemergence Crabgrass Control 52 J.E. Haley, D.J. Wehner, and T.W. Fermanian 52
Broadleaf Weed Control Research at the University of Illinois
Postemergence Broadleaf Weed Control
Turfgrass Nutrient Research at the University of Illinois58Nitrogen Utilization in Creeping Bentgrass58Y. Kuo, D.J. Wehner and T.W. Fermanian
Turfgrass Nutrient Research at Southern Illinois University
Growth Retardant Research at the University of Illinois 64 Evaluation of Primo Applied in Tank Mixes with Other Herbicides 64 J.E. Haley and T.W. Fermanian 64 Storage Carbohydrate Content of Creeping Bentgrass Receiving Multiple 67
S. Han and T.W. Fermanian Growth Retardant Research at Southern Illinois University
Evaluation of Growth Regulator Combinations on Kentucky Bluegrass Turf and Efficacy of ProGibb in Negating the Effects of Primo

CONTENTS

Plant Pathology Field Research Conducted at the University of Illinois H.T. Wilkinson, R.T. Kane and L.M. Ortiz	75
Fungicide Control of Dollar Spot on Bentgrass	76
Fungicide Trials for the Control of Dollar Spot on Bentgrass at Ridgemoor	
Country Club, Chicago	84
Fungicide Control of Brown Patch on Bentgrass	
Fungicide Trials for the Control of Summer Patch on Bluegrass	94
Fungicide Research at Southern Illinois University	98
Evaluation of Fungicides in 'Arid' Tall Fescue	98
K.L. Diesburg	
Appendix A: Abbreviations	
Appendix B: Weather Information for Champaign, Illinois	103

FOREWORD

The 1994 Illinois Turfgrass Research Report presents the results of turfgrass research investigations conducted in Illinois during 1994. Contributors include scientists from the Departments of Horticulture and Plant Pathology at the University of Illinois and the Department of Crop and Soil Sciences at Southern Illinois University.

We hope turfgrass managers throughout Illinois use the information presented here when making management decisions. Nevertheless, information about products and procedures contained in this report are not intended as turfgrass management recommendations. All uses of pesticides are registered by appropriate State and Federal agencies before they can be recommended. In addition, commercial companies are mentioned in this publication solely for the purpose of providing specific information. Product endorsement is not implied or intended.

Jean Kaley

Jean Haley, Editor

ACKNOWLEDGMENTS

We wish to thank the following companies, and organizations for their support of our turfgrass research programs during 1991-1994 through their contributions of time, materials, or funding at the University of Illinois and Southern Illinois University.

> Abbot Labs A-G Turf Farms AgrEvo, USA Agrisorbents Product Group Aimcor Corp. American Cyanamid, Inc. American Turf Sod Farms Arkansas Valley Seed Co. Authur Clesen, Inc. Baker Seed Co. BASF Corp. Beckman Turf & Irrigation Belleville Seed House Benck's Turf Nursery BioPlus Mfg., Inc. E.F. Burlingham and Sons Cantigny Golf Course Cardinal Creek Country Club Central Illinois Golf Course Superintendents Association Central Sod Farms, Inc. Champaign Country Club ChemFarm, Inc. Chicago Botanic Garden Chicago District Golf Foundation Chicagoland Golf Course Superintendents Association Ciba Corp. Coon Creek Sod Farms Crestwicke Golf Club Cushman-Ryan Deere and Co. Department of Animal Science, University of Illinois Division of Intercollegiate Athletics, University of Illinois DowElanco Dunteman Turf Farms E.I. DuPont de Nemours & Company, Inc. Evergreen Sod Farm, Inc. Floratine Products, Inc.

Acknowledgements continued:

Forbes Seed Co. Foxcroft Meadows. Inc. Grace-Sierra Greener Gardens Sod Farm Griffin Industries Growmark H & H Seed Company, Inc. Hoechst-Roussel Agri-Vet Co. **ICI** America Clete Idoux H & E Sod Nursery, Inc. Huber Ranch Sod Nursery, Inc. Illini F.S. Inc. Illinois Lawn Equipment, Inc. Illinois Natural History Survey Illinois Nurseryman's Association Illinois Turfgrass Foundation IMC Agrico International Seeds, Inc. Iowa State University ISK Biosciences, Corp. Jacklin Seed Co. Jackson Country Club Jackson County Extension Service Jacobsen Div. Textron Co. Kane County Cooperative Extension Service Kellog, Inc. Seed & Supplies Lake County Cooperative Extension Service Lebanon Chemical Corp. LESCO Inc. Lincolnshire Fields Country Club Lofts Seed. Inc. Medalist America McHenry County Cooperative Extension Service Michigan State University Mid American Sod Producers Association Midwest Association of Golf Course Superintendents Miles Incorporated Milwaukee Metropolitan Sewerage District Monsanto Agricultural Co. Mueller Farms, Inc. Muellermist Irrigation Co. National Seed Co. National Turfgrass Evaluation Program

Acknowledgements continued:

NK Lawn & Garden Co. Neogen, Inc. Northwest Illinois Golf Course Superintendents Association Olsen-Fennel Seed Co. **Olympia Fields Country Club** Outdoor Equipment, Inc. Outdoor Turf and Irrigation Supplies PBI-Gordon Pickseed West, Inc. Dr. Herb Portz Possibility Place Nursery Prairie Gardens Pure Seed Testing Quality Seed, Inc. **Quality Turf Nurseries** Red Hen Turf Farm, Inc. Rohm & Haas Company Rhone-Poulenc Ag. Co. Ridgemoor Country Club Riverside Golf Club Ruth Lake Country Club Sandoz Crop Protection Schaafsma Sod Farm O.M. Scott & Sons Co. Seaboard Seed Co. Sherman's Small Engines Silver Lake Country Club Southern Illinois Golf Course Superintendents Association Southern Illinois Grounds Maintenance Association Southern Illinois University, College of Agriculture Southern Illinois University, Physical Plant Spraying Systems Co. Summit Seed Company Tee-2-Green Corp. Terra/Androc. Inc. **Terra** International Thornton's Sod Nursery Thornton's Turf Nursery Toro Co. Turf Merchant, Inc Turf Products Ltd., Inc. Turf-Seed Inc. United Horticulture Supply United States Golf Association

Acknowledgements continued:

University of Illinois, College of Agriculture Experiment Station University of Illinois Extension Service University of Illinois, Grounds Department University of Missouri Vaughan-Jacklin Corp. Virginia Turf Farms Warren's Turf Nursery Zajac Performance Seeds Zeneca Incorporated

UNDERSTANDING THE DATA

Most of the data presented in this report is subjected to statistical analysis. Statistical procedures are a combination of logic and arithmetic that allow us to interpret information gathered from experiments. We most frequently use Fisher's Least Significant Difference Test to explain our test data.

Fisher's Least Significant Difference Test is a statistical procedure that determines if the difference found between two treatments is due to the treatment or if the difference is simply due to random chance. For each set of data a value $(LSD_{0.05})$ is calculated at a

chosen level of significance. If the difference between two treatment means is greater than this calculated value then it is said to be a 'significant difference' or a difference <u>not</u> due to random chance. For each set of data, a letter(s) is placed by each treatment mean to show its relationship to every other treatment mean. If two means have one or more letters in common, it is probable that any difference between them is not significant but is the result of random chance. The level of significance that we use is $0.05 (LSD_{0.05})$. In other words,

95% of the time these treatments are compared this difference will occur. If no letters accompany the means and 'NS' is reported at the top of the column as a footnote marker then no significant difference was found among the means in this group of data.

TURFGRASS CULTIVAR RESEARCH CONDUCTED BY THE UNIVERSITY OF ILLINOIS, URBANA, IL

Many years of research are needed to evaluate a turfgrass cultivar before it is placed on the market. For instance, a cultivar that thrives in the Pacific northwest might die during a hot and dry midwest summer. With this in mind, studies were established to evaluate the performance of Kentucky bluegrass, perennial ryegrass, tall fescue, fine fescue, creeping bentgrass, buffalograss, and zoysiagrass cultivars under environmental conditions found in central Illinois.

National Turfgrass Evaluation Program (NTEP) Kentucky Bluegrass Cultivar Trial

J.E. Haley, T.B. Voigt, D.J. Wehner and T.W. Fermanian

Research Protocol:	Kentucky Bluegrass Cultivar Evaluation
Location:	Ornamental Horticulture Research Center, Urbana, IL.
Site Preparation:	existing vegetation killed with Roundup, area worked with Ryan dethatcher; fertilized at 1 lb N/M.
Seeding/ Establishment:	seeding date - September 17, 1990; seeding rate - 2 lbs seed/M; plot size - 5 ft x 6 ft; irrigation - to insure germination.
Plot Maintenance:	mowing height - 1.8 inches; irrigation - to prevent wilt.
1991	pesticides - postemergence broadleaf weed herbicide; fertilization - 1 lb N/W/yr.
1992	pesticides - postemergence broadleaf weed herbicide; fertilization - 3 lb N/M/yr.
1993	pesticides - postemergence broadleaf weed herbicide; fertilization - 3.5 lb N/M/yr.
1994	pesticides - postemergence broadleaf weed herbicide; fertilization - 3.0 lb N/M/yr.
Experimental Design:	RCB; 3 replications.

Kentucky bluegrass (Poa pratensis) is the most widely used turfgrass in Illinois. Its medium to medium fine leaf texture, cold and drought tolerance. ability to form a dense sod, and ability to adapt to a wide range of cultural programs make it suitable for home lawns, parks, athletic fields, golf courses or any area where a medium to high quality turf desired. The many is cultivars of Kentucky bluegrass differ considerably in quality, color. texture. stress tolerance, and resistance to pests. The purpose of this trial is to evaluate the response of 126 Kentucky bluegrass cultivars to the environment found in Illinois. This central cultivar trial is part of a national program (NTEP) conducted at several sites nationwide.

Evaluations of spring greenup, quality and disease performance during 1994 are listed in Table 1. Three Kentucky bluegrass cultivars that exhibited excellent spring greenup were 'Barblue,' 'Gemar' and 'Kenblue.' In early May quality ratings for most cultivars were fair. Those cultivars that displayed good or excellent quality during this time period were 'Ba 69-82,' 'Merit,' 'Ba 73-381,' 'Broadway, and 'H86-712.' Most turf quality declined during June, July and August. By early October quality ratings were poor to fair with the exception of 'H86-712,' 'Eagleton,' and 'PST-1DW.' Reduced performance was primarily the result of disease infection with several pathogens, including dollar spot (*Lanzia* spp. and *Moellerodiscus* spp.), brown patch (*Rhizoctonia* spp.) and necrotic ring spot (*Leptosphaeria korrae*). Cultivars 'Barmax,' 'Eclipse,' 'Monopoly,' 'PST-1DW,' and 'Eagleton' exhibited good to excellent resisitance to all disease organisms present. The site is also heavily contaminated with creeping bentgrass, making it impossible to evaluate many of the plots.

seaso		Local Street				34. C. M.	D '
	Spring <u>Greenup</u> ²			Quality ³			Disease Injury ⁴
Cultivar	4/1	5/3	6/9	7/17	8/19	10/4	8/18
A-34	4.7e-h	6.3bc	6.3h-l	6.0e-j	4.3c-g	4.0a-g	3.7a-g
Abbey	5.0f-i	6.0b	3.0a-c	3.0a-c	2.7a-c	3.0a-d	2.7a-d
Able 1	4.7e-h	6.3bc	6.0g-l	6.0e-j	3.3a-e	4.0a-g	3.7a-g
Alpine	2.3a	6.0b	7.7l-n	5.3c-i	5.0e-i	5.7f-j	5.0e-i
Ampellia	5.7i-j	6.0b	6.7i-m	4.3a-g	3.3а-е	4.3b-g	4.3c-h
Aspen	5.3g-j	6.0b	6.0g-1	5.3c-i	3.3а-е	5.0d-i	3.3a-f
Ba 69-82	3.3a-d	6.7cd	5.0d-i	5.0b-i	3.3а-е	4.3b-g	3.3a-f
Ba 70-131	3.0a-c	6.0b	6.7i-m	6.3f-j	4.3c-g	3.7a-f	4.3c-h
Ba 73-366	4.7e-h	6.0b	4.0a-f	3.7а-е	3.0a-d	4.3b-g	3.7a-g
Ba 73-381	4.7e-h	6.7bc	4.0a-f	4.7b-h	3.3a-e	4.0a-g	4.3c-h
Ba 73-382	5.0f-i	6.0b	3.7a-e	4.7b-h	3.3a-e	4.0a-g	4.0b-h
Allure	3.3a-d	6.0b	7.3k-n	7.0h-j	4.7d-h	4.7c-h	5.7g-j
(Ba 73-540)				5			
Ba 74-114	5.3g-j	6.0b	2.3a	3.0a-c	2.3ab	2.0a	3.0a-e
Ba 76-305	5.0f-i	6.0b	5.3e-j	7.0h-j	4.3c-g	5.7f-j	4.7d-i
Ba 77-279	3.3a-d	6.0b	4.0a-f	5.0b-i	3.3a-e	3.3a-e	4.3c-h
Ba 77-292	4.3d-g	6.0b	3.7а-е	4.7b-h	3.0a-d	3.3а-е	4.0b-h
Ba 77-700	4.7e-h	6.0b	4.3b-g	5.3c-i	4.3c-g	4.0a-g	5.0e-i
Ba 78-258	4.7e-h	6.0b	5.0d-i	5.0b-i	3.0a-d	4.0a-g	4.0b-h
Banff	6.0ij	6.0b	4.7c-h	5.0b-i	3.0a-d	4.3b-g	3.3a-f
BAR VB 1169	3.7b-e	6.0b	6.3h-l	6.3f-j	4.0b-g	4.7c-h	4.3c-h
BAR VB 1184	4.3d-g	6.0b	5.7f-k	3.7а-е	2.3ab	3.0a-d	2.7a-d
BAR VB 7037	4.7e-h	6.0b	3.7а-е	5.0b-i	3.7a-f	4.7c-h	3.7a-g
BAR VB 895	5.3g-j	6.0b	5.0d-i	4.7b-h	2.3ab	4.3b-g	3.3a-f
Barblue	6.3j	6.3bc	5.3e-j	5.7d-j	3.0a-d	3.7a-f	3.7a-g
Barmax	3.0a-c	6.0b	7.71-n	7.0h-j	6.7ij	4.7c-h	6.7ij
Baron	4.3d-g	6.0b	3.7а-е	4.0a-f	3.7a-f	4.3b-g	4.3c-h
Barsweet	4.0c-f	6.0b	5.0d-i	4.0a-f	2.0a	2.0a	3.0a-e
Bartitia	3.7b-e	5.3a	6.0g-l	5.7d-j	3.7a-f	3.7a-f	4.3c-h
Barzan	3.7b-e	6.3bc	5.7f-k	5.3c-i	4.0b-g	3.3а-е	4.0b-h
Blacksburg	3.7b-e	6.0b	7.0j-n	7.3ij	5.7g-j	4.7c-h	5.7g-j
Broadway	5.0f-i	7.0d	6.7i-m	4.7b-h	3.7a-f	4.3b-g	4.0b-h
Cardiff	4.7e-h	6.0b	5.0d-i	5.0b-i	4.0b-g	4.3b-g	5.0e-i

 Table 1. The evaluation of Kentucky bluegrass cultivars during the 1994 growing season.¹

¹All values represent the mean of 3 replications. Means in the same column with the same letter are not significantly different at the 0.05 level as determined by Fisher's Protected Least Significant Difference test.

²Spring greenup evaluations are made on a 1-9 scale where 9 = green, actively growing turf and 1 = dormant turf.

³Quality evaluations are made on a 1-9 scale where 9 = excellent turfgrass quality and 1 = very poor turfgrass quality.

⁴ Disease injury is made when a visual determination of a specific disease is not possible or when injury is the result of several diseases. Evaluations are made on a scale of 1-9 where 9 = no visible injury and 1 = turf necrosis as a result of disease infection to 90-100% of the plot area.

	Spring <u>Greenup</u> ²			Quality ³			Disease Injury ⁴
Cultivar	4/1	5/3	6/9	7/17	8/19	10/4	8/18
Challenger	5.0f-i	6.0b	3.3a-d	4.7b-h	3.0a-d	2.7a-c	4.0b-h
Chelsea	5.3g-j	6.0b	4.0a-f	4.0a-f	3.0a-d	3.0a-d	2.7a-d
Classic	5.7h-j	6.0b	5.0d-i	4.7b-h	2.7a-c	5.0d-i	3.3a-f
Cobalt	5.0f-i	6.0b	4.7c-h	4.0a-f	2.7a-c	3.7a-f	2.7a-d
Conni	4.3d-g	6.0b	5.3e-j	4.3a-g	3.7a-f	4.0a-g	3.3a-f
Coventry	3.3a-d	6.0b	6.0g-1	7.3ij	4.3c-g	4.7c-h	4.7d-i
Crest	4.7e-h	6.0b	3.7a-e	3.7а-е	3.0a-d	4.0a-g	3.3a-f
Cultivar 1757	5.3g-j	6.0b	4.0a-f	4.3a-g	3.0a-d	4.0a-g	4.3c-h
Cultivar 602	4.0c-f	6.0b	7.3k-n	6.7g-j	4.7d-h	5.0d-i	4.7d-i
Cultivar 798	4.7e-h	6.0b	4.3b-g	5.3c-i	3.0a-d	3.3а-е	3.7a-g
Cynthia	5.3g-j	6.0b	7.3k-n	8.0j	6.7ij	4.0a-g	5.7g-j
Dawn	5.0f-i	6.0b	5.0d-i	4.0a-f	2.7a-c	4.0a-g	3.0a-e
Destiny	5.3g-j	6.0b	3.3a-d	3.7а-е	2.7a-c	3.3a-e	3.3a-f
Donna	5.0f-i	6.0b	3.7a-e	3.7а-е	3.0a-d	3.7a-f	3.0a-e
Eagleton	4.7e-h	6.0b	4.7c-h	8.0j	7.3j	7.0ij	7.7j
Eclipse	5.0f-i	6.0b	4.7c-h	6.3f-j	5.7g-j	5.7f-j	6.7ij
Estate	3.0a-c	6.3bc	4.3b-g	6.3f-j	4.3c-g	5.0d-i	4.7d-i
EVB 13.703	4.3d-g	6.0b	4.7c-h	5.7d-j	5.0e-i	5.3e-j	5.0e-i
EVB 13.863	4.0c-f	6.0b	3.7а-е	4.7b-h	3.7a-f	4.3b-g	4.3c-h
Fortuna	5.0f-i	6.0b	5.0d-i	6.0e-j	4.3c-g	5.0d-i	6.0h-j
Freedom	5.7h-j	6.0b	4.3b-g	3.7a-e	3.0a-d	4.7c-h	3.3a-f
Gemar	6.3j	6.0b	3.0a-c	6.3f-j	5.0e-i	5.3e-j	5.0e-i
Georgetown	5.7h-j	6.0b	4.7c-h	4.0a-f	3.0a-d	3.7a-f	2.7a-d
Ginger	6.0ij	6.0b	3.0a-c	4.0a-f	2.7a-c	3.3а-е	3.0a-e
Glade	4.7e-h	6.0b	6.3h-l	6.3f-j	4.0b-g	4.0a-g	3.7a-g
Gnome	5.0f-i	6.0b	3.7а-е	4.3a-g	3.0a-d	3.7a-f	3.3a-f
Greenley	6.0ij	6.0b	2.7ab	3.7a-e	2.7a-c	3.0a-d	3.0a-e
H86-712	5.3g-j	8.0e	7.71-n	5.3c-i	4.3c-g	6.7h-j	5.0e-i
Haga	5.7h-j	6.0b	5.3e-j	5.0b-i	2.7a-c	6.0g-j	3.0a-e
HV 125	5.0f-i	6.0b	5.0d-i	3.3a-d	3.3a-e	3.3a-e	3.7a-g
Indigo	5.0f-i	6.0b	3.3a-d	3.3a-d	3.0a-d	3.0a-d	3.0a-e
J-229	4.7e-h	6.0b	6.0g-1	4.0a-f	3.0a-d	5.3e-j	3.0a-e

 Table 1. The evaluation of Kentucky bluegrass cultivars during the 1994 growing season.¹ (continued)

¹All values represent the mean of 3 replications. Means in the same column with the same letter are not significantly different at the 0.05 level as determined by Fisher's Protected Least Significant Difference test.

²Spring greenup evaluations are made on a 1-9 scale where 9 = green, actively growing turf and 1 = dormant turf.

³Quality evaluations are made on a 1-9 scale where 9 = excellent turfgrass quality and 1 = very poor turfgrass quality.

⁴ Disease injury is made when a visual determination of a specific disease is not possible or when injury is the result of several diseases. Evaluations are made on a scale of 1-9 where 9 = no visible injury and 1 = turf necrosis as a result of disease infection to 90-100% of the plot area.

	Spring Greenup ²			Quality ³			Disease Injury ⁴
Cultivar	4/1	5/3	6/9	7/17	8/19	10/4	8/18
J-333	5.0f-i	6.0b	7.0j-n	6.7g-j	4.7d-h	3.7a-f	5.0e-i
J-335	3.3a-d	6.0b	6.7i-m	6.7g-j	5.0e-i	5.7f-j	5.0e-i
J-386	5.7h-j	6.0b	4.7c-h	7.3ij	4.7d-h	6.0g-j	5.3f-i
J11-94	5.0f-i	6.0b	4.3b-g	3.7a-e	2.7a-c	2.7a-c	2.7a-d
J13-152	4.7e-h	6.0b	3.7a-e	4.3a-g	3.0a-d	4.3b-g	3.3a-f
J34-99	5.3g-j	6.0b	4.0a-f	3.7a-e	2.7a-c	3.7a-f	3.0a-e
Julia	4.7e-h	6.0b	6.0g-1	5.3c-i	4.3c-g	3.7a-f	4.7d-i
Kelly	4.7e-h	6.0b	5.3e-j	5.0b-i	3.3a-e	3.7a-f	3.7a-g
Kenblue	6.3j	6.0b	3.3a-d	4.7b-h	3.0a-d	3.7a-f	3.7a-g
KWS Pp 13-2	4.3d-g	6.0b	3.7a-e	3.7а-е	2.7a-c	3.0a-d	3.0a-e
Liberty	4.3d-g	6.0b	5.3e-j	4.3a-g	2.3ab	4.0a-g	3.0a-e
Limousine	3.7b-e	6.0b	7.0j-n	6.3f-j	5.3f-i	4.7c-h	5.7g-i
Livingston	5.7h-j	6.0b	4.7c-h	5.7d-j	4.7d-h	5.7f-j	5.3f-i
Marquis	5.0f-i	6.0b	4.3b-g	5.7d-j	2.7a-c	3.7a-f	4.7d-i
Melba	5.3g-j	6.0b	6.3h-I	5.0b-i	4.0b-g	5.3e-j	5.0e-i
Merion	4.0c-f	6.0b	3.0a-c	3.7а-е	3.3a-e	3.3a-e	3.7a-g
Merit	5.0f-i	6.7cd	3.7а-е	6.0e-j	3.7a-f	5.0d-i	5.0e-i
Midnight	3.7b-e	6.0b	5.3e-j	5.7d-j	3.7a-f	4.7c-h	5.0e-i
Minstrel	5.0f-i	6.3bc	4.3b-g	6.0e-j	3.3а-е	4.7c-h	4.7d-i
Miracle	5.0f-i	6.0b	4.0a-f	2.7ab	3.0a-d	3.7a-f	3.3a-f
Miranda	4.3d-g	6.0b	5.0d-i	2.7ab	2.3ab	4.0a-g	2.3a-c
Monopoly	4.7e-h	5.3a	6.0g-l	8.0j	6.3h-j	5.7f-j	6.7ij
Nassau	5.7h-j	6.0b	3.3a-d	3.7a-e	2.7a-c	2.7a-c	2.3a-c
NE 80-47	5.3g-j	6.0b	3.7а-е	4.3a-g	3.0a-d	4.7c-h	3.7a-g
Noblesse	4.3d-g	6.0b	3.0a-c	3.0a-c	2.7a-c	3.0a-d	3.3a-f
NuStar	3.0a-c	6.0b	5.3e-j	4.7b-h	4.3c-g	4.0a-g	4.7d-i
Opal	5.0f-i	6.0b	5.0d-i	5.7d-j	4.7d-h	3.0a-d	5.7g-i
Platini	3.7b-e	6.0b	6.7i-m	4.7b-h	3.7a-f	3.7a-f	4.3c-h
PR-1	5.0f-i	6.0b	5.0d-i	2.0a	2.0a	3.7a-f	2.0ab
Princeton 104	5.0f-i	6.0b	6.7i-m	6.0e-j	4.7d-h	4.3b-g	5.0e-i
PST-0514	4.0c-f	6.0b	6.0g-1	6.0e-j	3.3а-е	3.7a-f	3.7a-g

 Table 1. The evaluation of Kentucky bluegrass cultivars during the 1994 growing season.¹ (continued)

¹All values represent the mean of 3 replications. Means in the same column with the same letter are not significantly different at the 0.05 level as determined by Fisher's Protected Least Significant Difference test.

²Spring greenup evaluations are made on a 1-9 scale where 9 = green, actively growing turf and 1 = dormant turf.

 $^{^{3}}$ Quality evaluations are made on a 1-9 scale where 9 = excellent turfgrass quality and 1 = very poor turfgrass quality.

⁴ Disease injury is made when a visual determination of a specific disease is not possible or when injury is the result of several diseases. Evaluations are made on a scale of 1-9 where 9 = no visible injury and 1 = turf necrosis as a result of disease infection to 90-100% of the plot area.

	Spring			Opality3			Disease
Cultivar	$\frac{\text{Greenup}^2}{4/1}$	5/3	6/9	Quality ³ 7/17	8/19	10/4	Injury ⁴ 8/18
Cultiva	-4/1	515	012	//1/	0/17	10/4	0/10
PST-1DW	2.7ab	6.0b	8.3mn	7.3ij	6.7ij	7.3j	6.7ij
PST-A7-1877	4.0c-f	6.0b	5.3e-j	6.0e-j	3.3а-е	3.0a-d	3.7a-g
PST-A7-341	5.0f-i	6.0b	4.0a-f	5.3c-i	3.3а-е	3.7a-f	3.7a-g
PST-A84-405	4.3d-g	6.0b	4.3b-g	5.0b-i	3.0a-d	4.3b-g	4.3c-h
PST-A84-803	5.3g-i	6.0b	4.3b-g	3.7а-е	3.0a-d	3.0a-d	3.0a-e
PST-A84-928	4.7e-h	6.0b	4.0a-f	3.7а-е	2.7a-c	2.3ab	3.7a-g
PST-B8-106	3.7b-e	6.0b	6.7i-m	5.3c-i	3.3а-е	3.3а-е	3.3a-f
PST-B8-13	5.0f-i	6.0b	3.7а-е	3.7а-е	3.7a-f	3.7a-f	3.7a-g
PST-C-224	3.3a-d	6.3bc	5.7f-k	5.3c-i	4.3c-g	5.3e-j	5.3f-i
PST-C-76	4.0c-f	6.0b	5.0d-i	5.7d-j	3.7a-f	4.0a-g	3.7a-g
PST-HV-116	5.0f-i	6.0b	5.3e-j	5.0b-i	3.7a-f	4.0a-g	4.0b-h
PST-R-740	4.7e-h	6.0b	4.0a-f	3.7а-е	3.0a-d	2.7a-c	2.7a-d
PST-RE-88	5.0f-i	6.0b	5.0d-i	5.3c-i	3.7a-f	4.3b-g	5.3f-i
PST-UD-10	5.7h-i	6.0b	4.7c-h	6.0e-j	3.7a-f	6.0g-j	4.7d-i
PST-UD-12	4.7e-h	6.0b	4.3b-g	4.3a-g	3.3а-е	4.0a-g	4.3c-h
PSU-151	5.0f-i	6.0b	6.7i-m	6.7g-j	4.7d-h	5.3e-j	4.7d-i
R751A	4.7e-h	6.0b	4.0a-f	4.0a-f	2.0a	3.0a-d	2.0ab
Ram-1	4.7e-h	6.0b	4.7c-h	3.7а-е	2.3ab	2.7a-c	3.0a-e
Ronde	5.3g-i	6.0b	3.3a-d	4.7b-h	3.0a-d	4.0a-g	3.3a-f
Silvia	4.7e-h	6.0b	4.0a-f	3.3a-d	3.0a-d	2.7a-c	2.7a-d
South Dakota	6.0ij	6.0b	3.0a-c	4.7b-h	3.7a-f	3.0a-d	3.3a-f
SR 2000	4.3d-g	6.0b	5.7f-k	6.3f-j	5.3f-i	4.3b-g	6.0h-j
SR 2100	3.7b-e	6.0b	6.3h-l	3.7а-е	2.7a-c	3.7a-f	2.7a-d
Suffolk	5.3g-i	6.0b	4.7c-h	4.3a-g	3.3а-е	4.3b-g	4.0b-ł
Summit	2.3a	6.0b	8.7n	7.3ij	6.7ij	5.7f-j	6.0h-j
Touchdown	5.7h-i	5.3a	7.0j-n	3.0a-c	2.7a-c	3.0a-d	3.0a-e
Trampas	4.7e-h	6.0b	5.7f-k	3.3a-d	2.3ab	2.7a-c	2.3a-c
Trenton	5.3g-i	6.0b	4.7c-h	3.0a-v	2.0a	3.0a-d	1.7a
Washington	6.0ij	6.0b	6.3h-l	6.3f-j	5.3f-i	4.7c-h	5.3f-i
WW Ag 505	4.0c-f	6.0b	6.0g-1	7.0h-j	5.7g-j	4.0a-g	6.0h-j
WW Ag 508	4.7e-h	6.0b	6.0g-1	6.3f-j	3.7a-f	5.0d-i	5.0e-i

 Table 1. The evaluation of Kentucky bluegrass cultivars during the 1994 growing season.¹ (continued)

¹All values represent the mean of 3 replications. Means in the same column with the same letter are not significantly different at the 0.05 level as determined by Fisher's Protected Least Significant Difference test.

²Spring greenup evaluations are made on a 1-9 scale where 9 = green, actively growing turf and 1 = dormant turf.

³Quality evaluations are made on a 1-9 scale where 9 = excellent turfgrass quality and 1 = very poor turfgrass quality.

⁴ Disease injury is made when a visual determination of a specific disease is not possible or when injury is the result of several diseases. Evaluations are made on a scale of 1-9 where 9 = no visible injury and 1 = turf necrosis as a result of disease infection to 90-100% of the plot area.

NTEP Perennial Ryegrass Cultivar Trial

J.E. Haley, T.B. Voigt, D.J. Wehner and T.W. Fermanian

Research	Perennial Ryegrass
Protocol:	Cultivar Evaluation
Location:	Ornamental Horticulture Research Center, Urbana, IL.
Site	treated with Roundup - August 3, 1994;
Preparation:	furnigated with methyl bromide - Septem- ber 9, 1994;
	rototilled and graded.
Seeding/	seeding date - September 21, 1994;
Establishment:	seeding rate - 5 lbs seed/M;
	plot size - 5 ft x 5 ft;
	mulched - Seed Guard™;
	fertilized at 1 lb N/M;
	irrigation - to insure germination.
Plot	mowing height - 2.5 inches;
Maintenance:	irrigation - to prevent wilt.
Experimental	RCB;
Design:	3 replications.

Perennial ryegrass (Lolium perenne Linnaeus) is included in seed mixtures as a temporary lawn or nursegrass, however it can persist for a number of years. In central Illinois it is used on many golf course fairways and is overseeded annually. It is also used in athletic fields with Kentucky bluegrass. In Illinois, deterioration of turf during summer months has prevented perennial ryegrass from becoming an important permanent turfgrass. Improved cultivars with better color, density, mowing quality, and disease resistance have challenged the traditional image of perennial ryegrass. The turf program at the University of Illinois is participating in a NTEP perennial ryegrass trial. This nationwide test evaluates the performance of 96 perennial ryegrass cultivars under a

broad range of climatic and cultural conditions. Two additional cultivars are also included in the test.

Seedling vigor varied among cultivars from fair to excellent (Table 2). Cultivars exhibiting excellent seedling vigor are 'Quickstart,' 'DSV NA 9402,' 'Assure,' 'Express,' 'Advantage,' 'SR 4200,' 'Figaro,' 'Top Hat,' 'ISI-R2,' and 'Accent.'

	Seedling Vigor ²							
Cultivar	10-04 Cultivar		10-04	Cultivar	10-04			
Accent	7.3g	Linn	6.3d-g	PSI-E-1	6.7e-g			
Achiever	5.3a-d	LRF-94-B6	5.0a-c	PST-28M	5.7b-e			
Advantage	7.0fg	LRF-94-C7	4.7ab	PST-2CB	6.0c-f			
APR 066	6.7e-g	LRF-94-C8	4.3a	PST-2DGR	5.0a-c			
APR 106	6.3d-g	LRF-94-MPRH	5.3a-d	PST-2DLM	6.0c-f			
APR 124	5.0a-c	Manhattan III	5.0a-c	PST-2ET	5.7b-e			
APR 131	6.3d-g	MB 1-5	5.3a-d	PST-2FE	5.3a-d			
Assure	7.0fg	MB 41	6.0c-f	PST-2FF	6.3d-g			
BAR Er 5813	5.7b-e	MB 42	5.0a-c	PST-2M3	5.0a-c			
BAR USA 94-11	5.3a-d	MB 43	6.0c-f	PST-2R3	5.7b-e			
Brightstar	6.3d-g	MB 44	4.7ab	PST-GH-94	5.3a-d			
Calypso II	6.0c-f	MB 45	5.7b-e	Quickstart	7.0fg			
CAS-LP23	5.3a-d	MB 46	5.0a-c	Riviera II	6.3d-g			
Cutter	6.0c-f	MB 47	6.0c-f	RPBD	6.0c-f			
Dancer	6.7e-g	MED 5071	4.7ab	Saturn	6.7e-g			
Divine	5.3a-d	Morning Star	6.7e-g	SR 4200	7.0fg			
DOP 1305	6.7e-g	MVF-4-1	6.0c-f	SRX 4010	5.7b-e			
DSV NA 9401	5.7b-e	Navajo	5.7b-e	SRX 4400	6.0c-f			
DSV NA 9402	7.0fg	Night Hawk	5.3a-d	Stallion Select	5.3a-d			
Edge	6.7e-g	Nine-O-One	5.3a-d	TMI-EXFLP94	6.0c-f			
Elf	6.0c-f	Nobility	6.3d-g	Top Hat	7.3g			
Esquire	5.7b-e	OFI-DM	5.0a-c	Vivid	5.7b-e			
Express	7.0fg	OFI-et	5.0a-c	Williamsburg	6.3d-g			
Figaro	7.0fg	Omni	5.7b-e	WVPB 92-4	6.7e-g			
Imagine	5.7b-e	PC-93-1	6.0c-f	WVPB-93-KFK	6.0c-f			
ISI-MHB	6.7e-g	Pegasus	6.7e-g	WVPB-PR-C-2	5.7b-e			
ISI-R2	7.3g	Pennfine	6.7e-g	WX3-91	5.3a-d			
J-1703	5.3a-d	Pick 928	6.7e-g	WX3-93	4.7ab			
J-1706	6.0c-f	Pick Lp 102-92	5.0a-c	ZPS-2DR-94	5.0a-c			
Koos 93-3	5.3a-d	Pick PR 84-91	4.7ab	ZPS-2NV	6.0c-f			
Koos 93-6	6.3d-g	Precision	6.0c-f	ZPS-2ST	5.0a-c			
Laredo	5.0a-c	Prizm	5.7b-e	ZPS-PR1	5.0a-c			
LESCO-TWF	4.7ab	PS-D-9	6.7e-g					

 Table 2. The evaluation of seedling vigor of 98 perennial ryegrass cultivars planted

 September 21, 1994.¹

¹All values represent the mean of 3 replications. Means in the same column with the same letter are not significantly different at the 0.05 level as determined by Fisher's Protected Least Significant Difference test.

²Seedling vigor is a visual estimate based on percent ground cover, plant height, etc., and reflects the relative speed at which an entry develops into mature sod. The evaluations are made on a 1-9 scale where 9 = excellent seedling vigor and 1 = very poor seedling vigor.

NTEP Tall Fescue Cultivar Trial

J.E. Haley, T.B. Voigt, D.J. Wehner and T.W. Fermanian

Research Protocol:	NTEP Tall Fescue Cultivar Evaluation
Location:	Ornamental Horticulture Research Center, Urbana, IL.
Site Preparation:	existing vegetation killed with Roundup; area worked with Ryan dethatcher; fertilized at 1 lb N/M.
Seeding/ Establishment:	seeding date - September 4, 1992; seeding rate - 4 lbs seed/M; plot size - 5 ft x 6 ft; irrigation - to insure germination.
Plot Maintenance:	mowing height - 2.5 inches; irrigation - to prevent wilt.
1992	pesticides - none; fertilization - 1.5 lbs N/M/yr.
1993	pesticides - postemergence broadleaf weed control herbicide; fertilization - 2.0 lbs N/W/yr.
1994	pesticides - postemergence broadleaf weed control herbicide; fertilization - 1.0 lbs N/W/yr.
Experimental Design:	RCB; 3 replications.

The introduction of improved "turf-type" tall fescue (Festuca arundinacea Schreb.) cultivars has led to increased tall fescue use where a higher quality turf is desired. These cultivars appear to have a finer texture, increased density and better tolerance to low mowing than the pasturetype fescues. tall Some research indicates that the improved cultivars have retained the good drought, heat. and wear tolerance needed in a low maintenance turf. In order to investigate the response of these cultivars to conditions found in east central Illinois a trial was established to evaluate 104 tall fescue cultivars. Ninety-two of these cultivars are part of the NTEP tall fescue trial. These cultivars will be evaluated at 39 different locations across the United States.

The tall fescue cultivars were seeded on September 4,

1992. Tall fescue cultivars were evaluated for spring greenup, turfgrass quality, genetic color and texture in 1994 (Table 3). Cultivars that exhibited excellent spring greenup were 'Phoenix,' 'Anthem,' 'Arid,' 'Kentucky 31,' with and without endophytes, and 'Falcon.' In late April, tall fescue quality was evaluated fair to excellent for most cultivars. Quality remained high throughout the growing season. Two cultivars, 'PST-5DX' with endophyte and 'BAR Fa 214' received texture ratings of 6.7 (1 - 9 scale where 1 = an extremely course turf and 9 = a very fine turf). Only 11 cultivars had color evaluations of 6 or less (1 - 9 scale where 1 = tan colored turf and 9 = dark green turf).

	Spring Greenup ²			Quality ³			Texture ⁴	Color ⁵
Cultivar	4/18	4/29	6/10	7/26	8/23	10/10	10/10	10/11
5DC	5.0ab	5.3a-c	6.7c-f	6.0а-е	4.3a	6.7c-g	5.0a-c	8.0gh
5EX	5.7a-d	5.7a-d	6.3b-e	6.3b-f	5.7a-e	6.0a-e	5.3b-d	7.7f-h
5MX	5.0ab	6.7c-g	7.0d-g	7.0d-f	6.7d-h	7.7f-h	5.7b-e	7.7f-h
5PVC	5.7a-d	6.7c-g	6.7c-f	5.7a-d	7.3f-i	7.0d-h		7.3e-h
Anthem	8.0h-j	5.3a-c	6.3b-e	4.7a	6.3c-g	6.3b-f	4.7ab	5.3ab
Arid	7.7g-i	5.7a-d	5.3ab	6.0а-е	5.7a-e	6.3b-f	5.7b-e	6.0b-d
Astro 2000	6.7d-g	6.7c-g	6.0b-d	5.7a-d	5.7a-e	6.7c-g		5.7bc
ATF-006	5.3a-c	7.0d-h	7.0d-g	5.3a-c	6.3c-g	6.7c-g	5.7b-e	7.0d-g
ATF-007	6.0b-e	7.7f-i	7.3e-g	5.7a-d	6.0b-f	6.7c-g	6.0с-е	7.0d-g
Austin	7.0e-h	7.7f-i	6.7c-f	6.3b-f	6.7d-h	6.7c-g		6.7c-f
Avanti	6.0b-e	6.0а-е	6.7c-f	6.3b-f	7.0e-h	6.3b-f	5.0a-c	7.0d-g
Aztec	7.3f-h	7.7f-i	7.7fg	6.0a-e	5.7a-e	7.0d-h	6.0с-е	8.0gh
BAR Fa 0855	6.7d-g	7.7f-i	7.0d-g	6.0a-e	7.0e-h	7.0d-h		7.7f-h
BAR Fa 214	6.0b-e	6.7c-g	7.0d-g	6.0а-е	6.0b-f	6.7c-g	6.7e	6.0b-d
BAR Fa 2AB	5.3a-c	7.3e-i	6.7c-f	5.7a-d	6.0b-f	6.7c-g	5.0a-c	7.7f-h
Bonanza	6.7d-g	6.7c-g	6.3b-e	6.0a-e	6.7d-h	6.7c-g		6.7c-f
Bonanza II	7.0e-h	8.0g-i	7.7fg	6.0a-e	6.3c-g	7.7f-h	5.3b-d	7.7f-h
Bonsai	5.7a-d	7.0d-h	7.7fg	5.0ab	7.7g-i	5.7a-d	6.0с-е	6.3b-e
Bonsai Plus	5.7a-d	7.3e-i	7.0d-g	5.7a-d	5.7a-e	6.7c-g		7.7f-h
Cafa 101	7.3f-h	7.0d-h	6.7c-f	6.7c-f	7.3f-i	7.0d-h		7.0d-g
CAS-LA20	5.7a-d	6.7c-g	7.0d-g	6.0a-e	6.3c-g	6.3b-f	5.3b-d	7.7f-h
CAS-MA21	6.0b-e	8.0g-i	6.3b-e	6.7c-f	7.3f-i	8.0gh	6.3de	7.3e-h
Cochise	6.0b-e	7.3e-i	7.0d-g	5.7a-d	7.3f-i	5.7a-d	6.3de	6.3b-e
Cultivar 403	6.7d-g	8.3hi	7.0d-g	6.3b-f	6.0b-f	7.3e-h	6.0с-е	7.7f-h
Duke	6.7d-g	7.7f-i	7.0d-g	7.0d-f	7.7g-i	7.0d-h	5.3b-d	7.0d-g
Eldorado	6.7d-g	8.0g-i	7.3e-g	5.7a-d	7.3f-i	7.0d-h	6.0с-е	7.3e-h
FA-19	5.7a-d	7.0d-h	7.0d-g	5.3a-c	5.7a-e	6.0а-е	6.3de	6.7c-f
FA-22	6.3c-f	7.3e-i	6.7c-f	6.0a-e	6.7d-h	6.0а-е	6.0с-е	6.0b-d
Falcon	8.0h-j	6.7c-g	6.3b-e	5.0ab	6.3c-g	6.3b-f	5.3b-d	6.3b-e
Finelawn 88	6.7d-g	7.7f-i	7.3e-g	6.3b-f	6.3c-g	6.0а-е	5.3b-d	6.7c-f
Finelawn	5.7a-d	7.3e-i	7.0d-g	5.7a-d	6.7d-h	5.7a-d	5.3b-d	6.7c-f
Petite								
GEN-91	6.0b-e	8.3hi	7.3e-g	7.0d-f	6.7d-h	6.7c-g	5.0a-c	7.7f-h
Guardian	6.3c-f	8.0g-i	7.3e-g	6.7c-f	7.3f-i	7.3e-h	6.0с-е	7.3e-h
ISI-AFA	6.0b-e	8.0g-i	7.3e-g	7.0d-f	7.7g-i	7.7f-h	5.7b-e	7.3e-h
ISI-AFE	6.7d-g	8.7i	7.7fg	7.3ef	6.7d-h	8.3h	5.7b-e	8.0gh
	-							-

Table 3. The evaluation of tall fescue cultivars during the 1994 growing season.¹

¹All values represent the mean of 3 replications. Means in the same column with the same letter are not significantly different at the 0.05 level as determined by Fisher's Protected Least Significant Difference test.

²Spring greenup evaluations are made on a scale of 1-9 where 9 = completely green and actively growing and 1 = dormant.

 $^{^{3}}$ Quality evaluations are made on a 1-9 scale where 9 = excellent turfgrass quality and 1 = very poor turfgrass quality.

⁴ Texture evaluations are made on a 1-9 scale where 1 = a very course turf blade and 9 = a very fine turf blade.

⁵ Color evaluations are made on a 1-9 scale where $1 = \tan turf$ and 9 = darkest green turf.

	Spring Greenup ²		(Quality ³			Texture ⁴	Color ⁵
Cultivar	4/18 -	4/29	6/10	7/26	8/23	10/10	10/10	10/11
ISI-ATK	7.3f-h	7.7f-i	7.0d-g	7.0d-f	7.3f-i	8.0gh	6.3de	7.0d-g
ISI-CRC	6.7d-g	8.3hi	6.7c-f	7.3ef	7.3f-i	8.3h	6.0с-е	7.3e-h
ITR-90-2	5.7a-d	7.3e-i	7.3e-g	6.0а-е	7.7g-i	7.0d-ł	6.0с-е	7.7f-h
J-1048	6.3c-f	8.0g-i	7.3e-g	6.7c-f	6.3c-g	7.0d-1	5.3b-d	7.7f-h
J1047	5.0ab	6.7c-g	6.7c-f	6.3b-f	7.3f-i	6.0а-е	5.3b-d	7.0d-g
Kittyhawk	6.3c-f	7.0d-h	7.0d-g	5.7a-d	6.0b-f	6.0а-е	5.7b-e	7.0d-g
KWS-DSL	6.0b-e	7.0d-h	7.3e-g	5.7a-d	6.7d-h	6.7c-g	5.7b-e	7.3e-h
Ky-31 no endo		4.7a	4.7a	4.7a	6.0b-f	5.0ab	4.7ab	4.3a
Ky-31 w/endo	9.0j	5.0ab	4.7a	4.7a	4.7ab	4.7a	4.0a	4.3a
Lancer	6.3c-f	8.3hi	7.7fg	6.7c-f	7.0e-h	7.3e-h	6.3de	7.7f-h
Leprechaun	6.0b-e	8.0g-i	8.0g	6.7c-f	6.7d-h	6.7c-g	5.3b-d	7.3e-h
Lexus	6.3c-f	8.0g-i	7.3e-g	6.7c-f	7.0e-h	7.0d-ł	5.7b-e	7.7f-h
M-2	6.3c-f	7.7f-i	6.7c-f	5.7a-d	6.3c-g	6.7c-g	6.3de	6.7c-f
MB-21-92	5.7a-d	6.7c-g	6.7c-f	7.0d-f	7.0e-h	7.0d-ł	5.7b-e	7.7f-h
MB-22-92	6.0b-e	7.7f-i	6.7c-f	6.3b-f	7.0e-h	7.3e-t	5.3b-d	7.7f-h
MB-23-92	5.7a-d	7.7f-i	6.7c-f	6.3b-f	7.0e-h	7.0d-ł	6.0с-е	7.3e-h
MB-24-92	5.3a-c	7.3e-i	7.3e-g	6.7c-f	7.0e-h	7.3e-t	5.7b-e	7.7f-h
MB-25-92	5.7a-d	7.0d-h	7.3e-g	6.3b-f	7.3f-i	7.3e-h	6.0с-е	7.7f-h
MED 10-1-1	5.7a-d	7.0d-h	7.0d-g	5.3a-c	6.3c-g	7.0d-ł	5.3b-d	7.0d-g
MED 10-6-8F	5.3a-c	6.3b-f	7.0d-g	5.7a-d	6.0b-f	6.7c-g	5.3b-d	7.0d-g
MED 10-7-2	5.7a-d	7.3e-i	6.7c-f	6.3b-f	7.0e-h	7.7f-h	5.0a-c	7.0d-g
MED 2-3-10	6.3c-f	7.0d-h	6.7c-f	5.0ab	6.3c-g	6.3b-f	5.7b-e	6.7c-f
MED 2-3-19	6.7d-g	6.7c-g	7.0d-g	6.3b-f	6.3c-g	6.3b-f	5.3b-d	7.0d-g
MED 2-7-11	5.3a-c	7.0d-h	8.0g	5.3a-c	7.7g-i	7.7f-h	6.3de	7.7f-h
MED 2-9-3	6.7d-g	6.3b-f	7.3e-g	6.0a-e	7.0e-h	7.3e-ł	5.3b-d	7.3e-h
Micro DD	5.0ab	7.0d-h	7.7fg	6.7c-f	7.0e-h	6.7c-g	6.0с-е	7.3e-h
Monarch	6.7d-g	7.0d-h	6.7c-f	6.3b-f	6.0b-f	6.3b-f	5.7b-e	7.0d-g
Montank	6.7d-g	7.7f-i	7.7fg	6.3b-f	7.3f-i	7.0d-ł	5.3b-d	7.7f-h
OFI-TF-601	6.3c-f	7.3e-i	6.7c-f	6.3b-f	6.3c-g	6.7c-g	5.7b-e	7.0d-g
Olympic II	7.0e-h	6.3b-f	6.0b-d	6.0a-e	6.0b-f	6.0a-e	5.3b-d	6.7c-f
Phoenix	7.7g-i	7.0d-h	6.0b-d	6.3b-f	6.3c-g	7.0d-1	4.7ab	6.7c-f
Pick 90-10	5.3a-c	7.3e-i	7.3e-g	5.7a-d	7.0e-h	7.3e-ł	6.0c-e	7.3e-h
Pick 90-12	5.3a-c	8.7i	7.3e-g	6.3b-f	8.7i	7.3e-ł	5.3b-d	7.3e-h
Pick 90-6	5.3a-c	7.0d-h	7.3e-g	6.3b-f	7.3f-i	6.0а-е	5.7b-e	7.3e-h

Table 3. The evaluation of tall fescue cultivars during the 1994 growing season.¹ (continued)

¹All values represent the mean of 3 replications. Means in the same column with the same letter are not significantly different at the 0.05 level as determined by Fisher's Protected Least Significant Difference test.

²Spring greenup evaluations are made on a scale of 1-9 where 9 = completely green and actively growing and 1 =dormant.

³Quality evaluations are made on a 1-9 scale where 9 = excellent turfgrass quality and 1 = very poor turfgrassquality. ⁴ Texture evaluations are made on a 1-9 scale where 1 = a very course turf blade and 9 = a very fine turf blade.

⁵ Color evaluations are made on a 1-9 scale where $1 = \tan turf$ and 9 = darkest green turf.

	Spring <u>Greenup</u> ²			Quality ³			Texture ⁴	Color ⁵
Cultivar	4/18	4/29	6/10	7/26	8/23	10/10	10/10	10/11
Pick CII	6.3c-f	7.7f-i	7.0d-g	6.0а-е	7.3f-i	7.7f-h	5.7b-e	8.3h
Pixie	5.7a-d	8.0g-i	7.7fg	6.3b-f	7.0e-h	6.3b-f	5.7b-e	7.0d-g
PRO-9178	5.7a-d	7.7f-i	6.7c-f	5.7a-d	6.7d-h	6.3b-f	5.3b-d	7.0d-g
PST-59D	5.3a-c	7.0d-h	6.7c-f	5.3a-c	7.3f-i	6.3b-f		7.7f-h
PST-5DX	6.0b-e	7.7f-i	7.3e-g	7.0d-f	7.0e-h	7.7f-h	6.7e	8.0gh
w/endo	0.00-0	7.71-1	7.5C-g	7.00-1	7.00-11	/./1-11	0.70	o.ogn
PST-5LX	5.0ab	7.7f-i	7.3e-g	6.3b-f	7.0e-h	6.3b-f	5.7b-e	7.3e-h
PST-5PM	6.3c-f	8.3hi	7.0d-g	6.0a-e	8.0hi	7.7f-h	6.0с-е	8.0gh
PST-5STB	5.3a-c	6.7c-g	7.0d-g	4.7a	5.0a-c	5.7a-d	5.0a-c	7.0d-g
PST-5VC	6.7d-g	7.3e-i	7.0d-g	5.3a-c	6.7d-h	7.3e-h		8.0gh
PST-RDG	5.3a-c	6.7c-g	7.0d-g	5.7a-d	6.3c-g	7.3e-h		8.0gh
PSTF-200	7.0e-h	7.7f-i	8.0g	7.0d-f	7.7g-i	7.3e-h	6.0с-е	7.0d-g
PSTF-401	6.0b-e	7.0d-h	6.7c-f	6.7c-f	7.7g-i	7.7f-h	6.3de	7.3e-h
PSTF-LF	7.0e-h	7.7f-i	7.3e-g	6.0a-e	7.0e-h	7.0d-h		7.7f-h
Rebel Jr	6.7d-g	8.3hi	7.0d-g	5.3a-c	7.0e-h	6.0a-e	5.0a-c	7.0d-g
Rebel-3D	5.7a-d	8.3hi	7.7fg	5.0ab	6.7d-h	5.7a-d		7.0d-g
Safari	6.3c-f	6.7c-g	5.7a-c	5.7a-d	6.0b-f	6.3b-f		6.7c-f
SFL	6.0b-e	7.0d-h	7.7fg	6.7c-f	6.3c-g	6.7c-g		7.0d-g
Shenandoah	6.7d-g	7.0d-h	6.7c-f	6.3b-f	7.0e-h	7.0d-h	5.3b-d	7.0d-g
Silverado	6.7d-g	8.0g-i	7.0d-g	5.7a-d	7.7g-i	7.0d-h	6.0с-е	7.7f-h
SIU-1	6.3c-f	6.7c-g	7.0d-g	7.0d-f	6.0b-f	7.7f-h	5.7b-e	7.3e-h
SR 8010	6.7d-g	6.7c-g	6.7c-f	6.0а-е	6.7d-h	6.0a-e	6.3de	5.7bc
SR 8200	5.3a-c	8.0g-i	7.3e-g	6.3b-f	7.7g-i	7.3e-h	6.0с-е	7.0d-g
SR 8210	6.3c-f	7.7f-i	7.7fg	6.3b-f	7.7g-i	6.3b-f		7.0d-g
SR 8300	6.7d-g	7.0d-h	6.3b-e	5.7a-d	6.7d-h	7.3e-h		6.7c-f
SR 8400	6.3c-f	8.3hi	7.7fg	7.7f	7.3f-i	8.0gh	6.3de	7.0d-g
Tomahawk	6.0b-e	8.0g-i	7.0d-g	7.3ef	7.7g-i	7.3e-h		8.0gh
Trailblazer II	6.0b-e	7.7f-i	7.3e-g	6.3b-f	6.7d-h	7.3e-h		8.0gh
Twilight	4.7a	5.7a-d	7.0d-g	5.0ab	5.3a-d	5.7a-d		7.7f-h
Vegas	6.0b-e	7.7f-i	7.0d-g	6.3b-f	7.3f-i	6.3b-f		7.7f-h
Virtue	6.0b-e	7.7f-i	7.3e-g	6.0а-е	7.3f-i	7.0d-h		7.7f-h
WSI-208-2	5.3a-c	6.3b-f	6.7c-f	7.0d-f	7.7g-i	7.7f-h		7.7f-h
ZPS-E2	6.0b-e	7.7f-i	7.7fg	6.7c-f	7.7g-i	7.3e-h		7.0d-g
ZPS-J3	6.7d-g	8.3hi	7.3e-g	7.3ef	7.7g-i	7.7f-h		7.0d-g
ZPS-ML	5.0ab	7.7f-i	8.0g	6.3b-f	7.7g-i	7.7f-h	6.0с-е	8.3h
ZPS-VL	5.0ab	6.0а-е	7.0d-g	5.0ab	6.0b-f	5.3a-c	5.7b-e	7.7f-h

 Table 3. The evaluation of tall fescue cultivars during the 1994 growing season.¹

 (continued)

¹All values represent the mean of 3 replications. Means in the same column with the same letter are not significantly different at the 0.05 level as determined by Fisher's Protected Least Significant Difference test.

²Spring greenup evaluations are made on a scale of 1-9 where 9 = completely green and actively growing and 1 = dormant.

 $^{^{3}}$ Quality evaluations are made on a 1-9 scale where 9 = excellent turfgrass quality and 1 = very poor turfgrass quality.

⁴ Texture evaluations are made on a 1-9 scale where 1 = a very course turf blade and 9 = a very fine turf blade.

⁵ Color evaluations are made on a 1-9 scale where $1 = \tan turf$ and 9 = darkest green turf.

NTEP Fine Fescue Cultivar Trial

J.E. Haley, T.W. Fermanian, T.B. Voigt and D.J. Wehner

Research Protocol:	NTEP Fine Fescue Cultivar Evaluation
Location:	Ornamental Horticulture Research Cntr, Urbana, IL.
Site Preparation:	existing vegetation killed with Roundup; area rototilled and graded; fertilized - 1 lb N/M.
Seeding/ Establishment:	seeding date - September 21, 1993; seeding rate - 4.4 lbs seed/M; plot size - 5 ft x 5 ft; straw mulch at 1.5 bales/M; irrigation - to insure germination.
Plot Maintenance:	mowing height - 2.5 inches; irrigation - only during severe moisture stress and dormancy ;
1994	pesticides - none; fertilization - 1 lb N/M in Nov.
Experimental Design:	RCB; 3 replications.

Fine fescue is a common name used to describe several turfgrass species and subspecies in the genus Festuca. These species all have a fine leaf blade and are adapted to a wide range of climates and management practices. They are used in seed mixtures for use in home lawns, on roadsides, and golf course roughs. Some fine fescues are used to overseed greens subtropical in climates for winter color and play. Fine fescues used as turfgrass include creeping red fescue, a strong creeping type and a slender creeping type (Festuca rubra L ssp. rubra and Festuca rubra L. ssp. trichophylla Gaud. or ssp. litoralis). Chewings fescue (F. rubra L. subsp. commutata Gaud.), sheep fescue (F. ovina) and hard fescue (\tilde{F} . longifolia) have bunch type growth habit. Creeping and chewings fescue are best adapted to well drained, moderately shaded sites

with low to moderate management. They tolerate mowing heights of 1.5-3.0 inches and grow best with fertilization at 2 lbs N/M/yr or less. Sheep fescue is best adapted to sites of very low management. It is often used for soil stabilization on well-drained sandy or gravelly soils. It does not mix well with other types of turfgrass due to its bunch type growth habit and its stiff bluish-green leaves. Like the other fine fescues, hard fescue does well in dry soils of low fertility, however, it is more tolerant to moist, fertile soils and close mowing than sheep fescue. Because of the low management needs of fine fescues, effort has been made to develop new cultivars with better heat tolerance and disease resistance. NTEP has designed a fine fescue trial that will examine 60 fine fescue cultivars at 32 sites across the United States (26 chewings, 15 hard, 2 sheep 17 creeping). The evaluation was established at the University of Illinois in September 1993.

Turfgrass quality and spring greenup is presented in Table 4. Leaf blade color and texture are presented in Table 5. Most fine fescue cultivars exhibited fair spring greenup and early quality. Quality improved throughout the summer with 24 cultivars rated 7.0 or above in July (scale 1-9, 9 = highest turf quality and 1 = 100% necrotic turf). Cultivars with a rating of 7.7 or higher at this time were 'MB 66-93,' 'PST-4DT,' 'Pamela,' 'PST-4ST,' and 'Medina.' General quality declined slightly in the fall with only 8 cultivars

evaluated at 7.0 or greater in October. Most fine fescue cultivars maintained good to excellent color. No significant difference in blade texture was observed among culitvars. All were evaluated as having a very fine texture.

	Spring Greenup ²							
Cultivar	3-31	4-28	5-26	7-17	Quality ³ 8-9	9-1	10-3	10-26
Cultiva	001	1 200	0 20	1 11			10.5	10 20
Aruba	6.0de	6.3f-i	6.7c-g	5.7b-f	6.0b-f	6.0b-f	5.0bc	5.3b-d
Aurora endo	5.3b-d	4.7a-d	6.0a-e	7.3e-h	6.3b-f	5.7b-e	5.7с-е	6.3d-g
Banner II	6.0de	7.0hi	7.3e-h	6.3c-g	6.3b-f	6.0b-f	7.0f-h	6.0c-f
BAR Frr 4ZBD	4.3a	5.3c-f	6.7c-g	6.3c-g	5.0bc	5.3b-d	5.7с-е	6.0c-f
BAR UR 204	5.7c-e	6.3f-i	7.0d-g	5.0a-d	5.3b-d	5.3b-d	5.3b-d	5.7b-e
Bridgeport	6.0de	6.3f-i	7.3e-h	6.7c-h	7.0d-f	6.3c-g	6.7e-h	6.0c-f
Brigade	6.0de	4.3a-c	5.7a-d	7.3e-h	6.7c-f	6.0b-f	6.0c-f	5.3b-d
Brittany	5.3b-d	5.0b-e	6.3b-f	6.0b-g	6.0b-f	5.7b-e	6.3d-g	6.3d-g
CAS-FR13	5.7с-е	5.3c-f	6.3b-f	6.3c-g	6.7c-f	6.3c-g	5.7с-е	5.7b-e
Cascade	5.7с-е	7.3i	6.3b-f	5.0a-d	6.0b-f	5.3b-d	5.3b-d	5.7b-e
Common creeping	5.7с-е	7.0hi	7.3e-h	6.0b-g	6.0b-f	6.0b-f	6.0c-f	6.0c-f
Cultivar 67135	7.7f	5.3c-f	4.7a	3.0a	2.7a	3.0a	3.7a	3.3a
Darwin	5.0a-c	4.3a-c	5.7a-d	7.3e-h	6.3b-f	6.0b-f	6.0c-f	6.3d-g
Dawson	4.7ab	5.7d-g	6.7c-g	7.0d-h	6.0b-f	7.0e-g	7.0f-h	7.7h
Discovery	5.3b-d	4.0ab	5.0ab	6.3c-g	6.7c-f	6.0b-f	6.0c-f	6.3d-g
Ecostar	5.0a-c	5.3c-f	7.0d-g	5.0a-d	5.3b-d	6.0b-f	6.0c-f	6.7e-h
Flyer	5.3b-d	6.3f-i	5.7a-d	6.0b-g	5.0bc	5.3b-d	5.7с-е	6.3d-g
FO 143	4.3a	4.0ab	5.3a-c	7.0d-h	6.0b-f	5.0bc	4.3ab	4.7b
ISI-FC-62	6.0de	6.3f-i	7.7f-h	6.7c-h	7.3ef	6.3c-g	7.0f-h	6.7e-h
Jamestown	5.0a-c	7.0hi	7.7f-h	5.7b-f	6.0b-f	5.3b-d	5.7с-е	5.0bc
Jamestown II	6.0de	7.0hi	8.7h	6.3c-g	7.3ef	6.7d-g	6.7e-h	6.3d-g
Jasper	5.0a-c	6.0e-h	5.7a-d	4.0ab	4.7b	4.7b	6.3d-g	7.0f-h
MB 61-93	5.3b-d	5.7d-g	6.3b-f	7.3e-h	6.3b-f	6.7d-g	6.3d-g	6.3d-g
MB 63-93	6.0de	4.3a-c	6.3b-f	7.0d-h	6.3b-f	6.3c-g	6.0c-f	6.3d-g
MB 64-93	5.3b-d	5.7d-g		7.0d-h	7.0d-f	6.3c-g	6.3d-g	6.3d-g
MB 65-93	6.3e	6.0e-h	8.0gh	7.3e-h	7.7f	7.3fg	6.3d-g	6.3d-g
MB 66-93	6.0de	5.0b-e	7.3e-h	7.7f-h	6.7c-f	5.7b-e	6.3d-g	5.3b-d
MB 81-93	6.0de	4.3a-c	5.3a-c	6.7c-h	5.3b-d	5.7b-e	5.7с-е	6.0c-f
MB 82-93	5.7c-e	5.0b-e	7.0d-g	6.7c-h	6.0b-f	6.7d-g	6.0c-f	6.7e-h
MB 83-93	5.3b-d	5.0b-e	7.0d-g	6.7c-h	6.0b-f	6.0b-f	6.0c-f	6.7e-h

Table 4.	The evaluation	of fine	e fescue cultivar	's during the	1994 growing season. ¹
----------	----------------	---------	-------------------	---------------	-----------------------------------

(continued)

14

¹ All values represent the mean of 3 replications. Means in the same column with the same letter are not significantly different at the 0.05 level as determined by Fisher's Protected Least Significant Difference test.

² Spring greenup evaluations are made on a scale of 1-9 where 9 = completely green and actively growing and 1 = dormant.

³ Quality evaluations are made on a 1-9 scale where 9 = excellent turfgrass quality and 1 = very poor turfgrass quality.

	Spring Greenup ²	Quality ³						
Cultivar	3-31	4-28	5-26	7-17	8-9	9-1	10-3	10-26
MED 32	4.7ab	4.7a-d	6.0а-е	7.0d-h	5.3b-d	5.3b-d	5.0bc	5.7b-e
Medina	6.3e	5.3c-f	7.3e-h	8.7h	6.7c-f	6.0b-f	6.7e-h	5.7b-e
Molinda	6.0de	5.7d-g	7.0d-g	5.3b-e	5.3b-d	5.7b-e	6.0c-f	6.0c-f
NJ F-93	5.3b-d	6.0e-h	7.7f-h	5.3b-e	6.3b-f	6.7d-g	6.3d-g	6.0c-f
Nordic	5.3b-d	4.7a-d	7.0d-g	7.0d-h	6.7c-f	6.0b-f	6.0c-f	6.3d-g
Pamela	6.0de	5.0b-e	7.3e-h	8.0gh	6.0b-f	6.0b-f	5.3b-d	5.7b-e
Pick 4-91W	5.7с-е	5.3c-f	7.3e-h	5.0a-d	6.0b-f	6.7d-g	6.7e-h	6.3d-g
PRO 92/20	5.7с-е	7.3i	7.7f-h	5.7b-f	6.7c-f	6.3c-g	6.3d-g	6.7e-h
PRO 92/24	5.3b-d	5.3c-f	6.7c-g	7.3e-h	6.3b-f	6.7d-g	5.7с-е	6.7e-h
PST 44D	5.3b-d	5.3c-f	5.7a-d	6.0b-g	6.3b-f	6.0b-f	5.3b-d	6.3d-g
PST-4DT	6.0de	5.7d-g	7.0d-g	8.0gh	7.0d-f	7.7g	7.0f-h	7.7h
PST-4ST	6.0de	5.3c-f	6.3b-f	8.0gh	7.0d-f	7.3fg	7.0f-h	7.0f-h
PST-4VB Endo	5.0a-c	4.7a-d	6.0a-e	7.0d-h	6.0b-f	6.7d-g	7.7h	7.3gh
Reliant II	6.0de	3.7a	5.3a-c	7.0d-h	6.3b-f	6.3c-g	6.0c-f	6.3d-g
Rondo	5.3b-d	5.7d-g	7.0d-g	7.3e-h	6.0b-f	6.0b-f	5.7с-е	5.7b-e
Scaldis	6.0de	4.3a-c	5.7a-d	6.3c-g	5.7b-e	5.0bc	5.3b-d	6.3d-g
Seabreeze	5.0a-c	6.3f-i	7.0d-g	7.0d-h	6.0b-f	6.0b-f	6.3d-g	7.7h
Shademaster II	5.0a-c	4.3a-c	6.0a-e	6.3c-g	6.7c-f	6.7d-g	5.7c-e	6.3d-g
Shadow E	5.7с-е	5.7d-g	6.7c-g	5.7b-f	6.3b-f	6.7d-g	6.7e-h	6.0c-f
Spartan	5.7с-е	5.0b-e	5.7a-d	6.3c-g	5.3b-d	6.0b-f	6.0c-f	6.0c-f
SR 3100	5.3b-d	4.0ab	5.3a-c	7.3e-h	6.0b-f	5.7b-e	5.7с-е	6.0c-f
SR 5100	5.3b-d	6.3f-i	6.3b-f	5.3b-e	6.3b-f	5.7b-e	6.7e-h	6.7e-h
Tiffany	5.7с-е	5.7d-g	7.0d-g	7.0d-h	6.3b-f	6.3c-g	7.3gh	7.0f-h
TMI-3CE	5.7c-e	6.0e-h	7.7f-h	5.7b-f	7.7f	7.0e-g	6.3d-g	6.7e-h
Victory	6.0de	6.7g-i	7.7f-h	6.3c-g	6.3b-f	6.7d-g	6.7e-h	6.7e-h
WVPB-STCR-101	6.0de	6.0e-h	6.7c-g	6.7c-h	6.0b-f	6.0b-f	5.0bc	4.7b
WX3-FF54	5.3b-d	5.0b-e	7.3e-h	7.0d-h	6.7c-f	6.7d-g	6.7e-h	6.0c-f
WX3-FFG6	5.7с-е	5.7d-g	7.0d-g	4.7a-c	4.7b	5.3b-d	6.0c-f	6.3d-g
ZPS-4BN	5.3b-d	6.3f-i	6.7c-g	5.3b-e	6.0b-f	6.3c-g	7.3gh	7.0f-h
ZPS-MG	6.0de	6.7g-i	8.0gh	6.3c-g	6.3b-f	6.7d-g	6.3d-g	6.3d-g

Table 4. The evaluation of fine fescue cultivars during the 1994 growing season.¹

¹ All values represent the mean of 3 replications. Means in the same column with the same letter are not significantly different at the 0.05 level as determined by Fisher's Protected Least Significant Difference test.

² Spring greenup evaluations are made on a scale of 1-9 where 9 = completely green and actively growing and 1 = dormant.

³ Quality evaluations are made on a 1-9 scale where 9 = excellent turfgrass quality and 1 = very poor turfgrass quality.

1994 gro	wing seaso				
Cultivar	<u>Color</u> ² 9-19	Texture ^{3ns} 10-05	Cultivar	<u>Color</u> ² 9-19	Texture ^{3 ns} 10-05
Aruba	5.7a-c	9.0	MED 32	7.0d-g	9.0
Aurora endo	7.0d-g	9.0	Medina	8.0gh	9.0
Banner II	6.3b-e	9.0	Molinda	6.7c-f	9.0
BAR Frr 4ZBD	8.0gh	8.7	NJ F-93	7.0d-g	
BAR UR 204	5.3ab	8.7	Nordic	7.3e-h	9.0
Bridgeport	7.3e-h	9.0	Pamela	6.7c-f	9.0
Brigade	7.7f-h	9.0	Pick 4-91W	7.0d-g	8.7
Brittany	8.0gh	9.0	PRO 92/20	6.7c-f	9.0
CAS-FR13	7.7f-h	8.7	PRO 92/24	5.7a-c	9.0
Cascade	5.3ab	9.0	PST 44D	7.0d-g	9.0
Common creeping	5.0a	9.0	PST-4DT	7.3e-h	9.0
Cultivar 67135	5.7a-c	9.0	PST-4ST	7.3e-h	9.0
Darwin	8.0gh	9.0	PST-4VB Endo	8.3h	8.7
Dawson	6.3b-e	9.0	Reliant II	7.0d-g	9.0
Discovery	8.3h	9.0	Rondo	6.0a-d	9.0
Ecostar	7.0d-g	8.7	Scaldis	7.7f-h	8.7
Flyer	6.7c-f	9.0	Seabreeze	7.3e-h	9.0
FÓ 143	7.3e-h	9.0	Shademaster II	7.7f-h	9.0
ISI-FC-62	7.0d-g	9.0	Shadow E	7.3e-h	9.0
Jamestown	6.3b-e	9.0	Spartan	6.7c-f	9.0
Jamestown II	6.0a-d	9.0	SR 3100	7.0d-g	9.0
Jasper	8.0gh	9.0	SR 5100	6.7c-f	8.7
MB 61-93	7.0d-g	9.0	Tiffany	7.3e-h	9.0
MB 63-93	7.7f-h	9.0	TMI-3CE	7.0d-g	9.0
MB 64-93	7.7f-h	9.0	Victory	6.0a-d	9.0
MB 65-93	7.7f-h	9.0	WVPB-STCR-101	7.3e-h	9.0
MB 66-93	7.0d-g	9.0	WX3-FF54	7.3e-h	9.0
MB 81-93	7.0d-g	9.0	WX3-FFG6	7.3e-h	9.0
MB 82-93	7.3e-h	9.0	ZPS-4BN	7.7f-h	9.0
MB 83-93	8.3h	9.0	ZPS-MG	7.0d-g	

 Table 5. The evaluation of the color and texture of 60 fine fescue cultivars during the 1994 growing season.¹

 ¹ All values represent the mean of 3 replications. Means in the same column with the same letter are not significantly different at the 0.05 level as determined by Fisher's Protected Least Significant Difference test.
 ² Color evaluations are made on a 1-9 scale where 1 = tan turf and 9 = darkest green turf.

³ Texture evaluations are made on 1-9 scale where 1 = a very course turf blade and 9 = very fine turf blade.

ns No significant difference was found among the means in this group of data.

1993 NTEP Bentgrass Evaluation

J.E. Haley, T.W. Fermanian, T.B. Voigt and D.J. Wehner

Research Protocol:	1993 NTEP Bentgrass Cultivar Evaluation
Location:	Ornamental Horticulture Research Center, Urbana, IL.
Site Preparation:	existing vegetation killed with Roundup; area surfaced tilled; fertilized at 1 lb N/M, an additional 1 lb N/M was applied after germination.
Seeding/ Establishment:	seeding date - September 10, 1993; seeding rate - 0.5 lb seed/M; plot size - 5 ft x 5 ft; irrigation - to insure germination.
Plot Maintenance:	mowing height - greens, 0.25 inches, fairway, 0.5 inches.
1994	irrigation - to prevent stress pesticides - none; fungicides - throughout the season to control and prevent disease; fertilization - 4.0 lbs N/Wyr.
Experimental Design:	RCB; 3 replications.

Over the last few years, two factors have resulted in an increased interest in creeping bentgrass (Agrostis palustris). These factors are the use of creeping bentgrass for golf course fairways and increased construction of golf courses. Commercial and public breeders responded to the increased interest in creeping bentgrass by developing new cultivars. The purpose of this study is to evaluate new cultivars of bentgrass for use as fairway and putting green turf. Two sets of plots were established in the fall of 1993. one set of 28 cultivars is being mowed at putting green height (0.25 inch) while the other set, 21 cultivars, is being mowed at fairway height (0.5 inch). Turf maintained at both mowing heights is being fertilized with 4 lbs of nitrogen

annually. These field trials are part of the NTEP study.

Results of Putting Green Height of Cut - Early spring greenup was fair to good for bentgrass mowed at putting green height (Table 6). Turf quality was poor to fair for most of the growing season, with some improvement in the fall. This is most likely do to high *Poa annua* infestation (Table 7). Cultivars with greater than 30% *P. annua* infestation include 'BAR AS 493,' 'Tendez,' 'G-2,' 'BAR Ws 42102,' and 'DG-P.' High *P. annua* infestation could be the result of poor establishment rate and low nitrogen fertilization. Cultivars that consistantly exhibited better quality than other cultivars in the study were 'Crenshaw,' 'A-4,' 'Providence,' and 'Pennlinks.' Turf color (genetic) during September was fair to excellent (Table 7). All cultivars exhibited a fine leaf texture (Table 7).

	Spring Greenup ²							
Cultivar	3-31	4-28	5-26	7-6	8-2	9-1	9-28	10-28
A-1	6.3a-c	4.0c-e	4.0b-d	4.3ef	5.3с-е	6.3ef	6.7gh	6.7gh
A-4	7.0c	4.7ef	4.3с-е	4.3ef	5.7de	6.3ef	6.7gh	6.3f-h
BAR AS 493	6.3a-c	2.7a	2.7a	2.3a	3.0a	3.0a	4.3a-c	3.7a
BAR Ws 42102	6.0ab	3.0ab	3.7bc	3.7с-е	5.3с-е	5.7c-f	5.3c-f	5.7d-g
Cato	6.7bc	3.7b-d	4.3с-е	3.7с-е	5.0с-е	6.3ef	6.0e-h	6.7gh
Crenshaw	6.0ab	5.0f	4.7de	4.3ef	5.3с-е	6.3ef	6.3f-h	6.7gh
Cultivar 18th Green	5.7a	3.3a-c	3.3ab	3.0a-c	4.3bc	5.3с-е	5.3c-f	4.3a-c
DG-P	6.3a-c	3.0ab	3.3ab	2.7ab	4.3bc	5.3с-е	5.7d-g	5.0b-e
G-2	6.7bc	3.0ab	3.7bc	4.0d-f	5.0с-е	5.3с-е	6.3f-h	6.7gh
G-6	6.7bc	3.3a-c	4.0b-d	3.7с-е	5.0с-е	5.7c-f	6.0e-h	6.0e-h
ISI-Ap-89150	7.0c	4.0с-е	4.0b-d	3.3b-d	5.0с-е	5.3с-е	6.0e-h	5.7d-g
L-93	7.0c	4.0c-e	4.7de	4.0d-f	5.7de	5.7c-f	6.7gh	6.3f-h
Lopez	7.0c	3.7b-d	3.3ab	3.3b-d	4.7b-d	5.0b-d	5.3c-f	4.7a-d
MŠUEB	7.0c	4.3d-f	4.7de	3.3b-d	4.7b-d	5.0b-d	5.7d-g	5.0b-e
Penncross	7.0c	5.0f	5.0e	4.0d-f	5.0с-е	5.0b-d	5.0b-e	4.0ab
Pennlinks	7.0c	4.3d-f	4.7de	4.3ef	5.7de	5.3с-е	5.3c-f	5.0b-e
PRO/CUP	6.7bc	4.3d-f	3.7bc	3.3b-d		5.0b-d	5.3c-f	5.0b-e
Providence	7.0c	5.0f	5.0e	4.3ef	6.0e	6.7f	7.0h	7.0h
Regent	7.0c	4.7ef	4.0b-d	3.3b-d	5.0с-е	5.3с-е	5.3c-f	5.0b-e
Seaside	7.0c	4.7ef	3.7bc	3.0a-c	3.7ab	4.0ab	4.0ab	4.0ab
Southshore	7.0c	4.3d-f	4.3с-е	3.7с-е	4.3bc	5.7c-f	6.0e-h	5.7d-g
SR 1020	6.3a-c	4.0c-e	4.0b-d	4.0d-f	4.3bc	5.3с-е	6.3f-h	5.7d-g
Syn 92-1-93	6.3a-c	4.0с-е	4.0b-d	4.7f	5.7de	5.7c-f	6.3f-h	5.3c-f
Syn 92-2-93	6.3a-c	4.0c-e	4.3с-е	4.3ef	4.3bc	4.0ab	5.7d-g	5.0b-e
Syn 92-5-93	6.7bc	4.7ef	4.3с-е	4.0d-f	5.0с-е	6.0d-f	6.3f-h	5.7d-g
Syn-1-88	6.7bc	4.3d-f	4.3с-е	3.7с-е	5.7de	5.0b-d	5.0b-e	5.3c-f
Tendez	6.3a-c	3.0ab	3.7bc	2.7ab	3.0a	3.3a	3.7a	4.0ab
Trueline	6.7bc	4.0c-e	4.0b-d	3.3b-d	4.7b-d	4.7bc	4.7a-d	5.0b-e

 Table 6. The evaluation of bentgrass cultivars mowed at the putting green height of cut during the 1994 growing season.¹

¹ All values represent the mean of 3 replications. Means in the same column with the same letter are not significantly different at the 0.05 level as determined by Fisher's Protected Least Significant Difference test. ² Spring greenup evaluations are made on a scale of 1-9 where 9 = completely green and actively growing and 1 =

dormant.

³ Quality evaluations are made on a 1-9 scale where 9 = excellent turfgrass quality and 1 = very poor turfgrassquality.

the 1994 growing season. ¹								
Cultivar	<u>% Poa annua</u> ² 5-26	<u>Color³</u> 9-19	<u>Texture</u> ⁴ 10-05					
A-1	23.3c-g	8.0ef	8.7cd					
A-4	16.7a-d	7.7d-f	9.0d					
BAR AS 493	50.0j	6.3a-c	8.7cd					
BAR Ws 42102	31.7g-i	7.7d-f	8.7cd					
Cato	20.0a-f	8.0ef	9.0d					
Crenshaw	16.7a-d	8.3f	8.3b-d					
Cultivar 18th Green	28.3f-i	7.3c-f	8.0a-c					
DG-P	31.7g-i	8.0ef	8.0a-c					
G-2	35.0hi	7.7d-f	8.7cd					
G-6	26.7e-h	7.7d-f	8.7cd					
ISI-Ap-89150	16.7a-d	8.0ef	8.0a-c					
L-93	18.3a-e	8.0ef	8.3b-d					
Lopez	25.0d-g	6.7a-d	8.0a-c					
MŜUEB	15.0a-c	6.7a-d	8.0a-c					
Penncross	11.7a	6.3a-c	7.7ab					
Pennlinks	15.0a-c	6.7a-d	8.0a-c					
PRO/CUP	21.7b-f	7.0b-e	8.0a-c					
Providence	16.7a-d	8.0ef	8.3b-d					
Regent	13.3ab	7.7d-f	8.0a-c					
Seaside	11.7a	6.7a-d	7.3a					
Southshore	13.3ab	7.0b-e						
SR 1020	18.3a-e	7.3c-f	8.3a-c					
Syn 92-1-93	18.3a-e	7.0b-e	9.0d					
Syn 92-2-93	18.3а-е	6.0ab	8.7cd					
Syn 92-5-93	20.0a-f	7.3c-f	8.7cd					
Syn-1-88	11.7a	6.7a-d	8.0a-c					
Tendez	36.7i	5.7a	8.7cd					
Trueline	16.7a-d	6.3a-c	8.0a-c					

Table 7. The evaluation of creeping bentgrass cultivarsmowed at the putting green height of cut duringthe 1994 growing season. 1

Results of Fairway Height of Cut - No significant difference in spring greenup was observed among cultivars mowed at 0.5 inch (Table 8). Greenup ratings ranged from fair to good. Bentgrass quality throughout the season was fair and showed some improvement in the fall. As noted in the previous discussion, this lackluster performance is most likely do to high *Poa annua* infestation. Cultivars that consistantly exhibited better quality than other cultivars in the study were 'Crenshaw,' 'Penneagle,' 'Providence,' and 'Penncross.' Cultivars with greater than 30% *P. annua* infestation include 'BAR AS 493,' 'Tendez,' 'G-2,' 'BAR Ws 42102,' 'Lopez,' 'SR 7100,' and 'G-6' (Table 9). Bentgrass color (genetic) was fair to excellent and leaf blade texture excellent (Table 9).

¹ All values represent the mean of 3 replications. Means in the same column with the same letter are not significantly different at the 0.05 level as determined by Fisher's Protected Least Significant Difference test.

² Percent Poa annua evaluations are a visual estimate of percent of the plot covered with annual bluegrass.

³ Color evaluations are made on a 1-9 scale where $1 = \tan turf$ and 9 = darkest green turf.

⁴ Texture evaluations are made on 1-9 scale where 1 = a very course turf blade and 9 = very fine turf blade.

uie 15	Spring	scason.							
	Greenup ^{2ns}		Quality ³						
Cultivar	3-31	4-28	5-26	7-6ns	8-2ns	9-1	9-28	10-28	
BAR AS 493	5.7	2.3a	2.7a	3.3	4.7	4.3ab	4.3ab	4.3b-d	
BAR Ws 42102	5.7	2.7ab	4.3bc	4.3	5.7	5.7c-f	6.3e-g	6.0f-h	
Cato	5.7	3.7b-е	4.3bc	4.0	5.0	6.0d-f	7.7h	7.0h	
Cltvr 18th Green	5.7	2.7ab	4.0b	3.7	5.0	5.3b-e	5.3b-e	5.0d-f	
Crenshaw	6.7	4.0c-f	5.3cd	4.7	6.0	6.3eg	7.0gh	7.0h	
DF-1	6.0	4.0c-f	4.7b-d	4.7	5.3	6.3eg	6.7f-h	6.0f-h	
Exeter	6.7	3.7b-е	4.7b-d	3.3	5.0	4.0a	4.3ab	4.3b-d	
G-2	6.3	2.3a	4.0b	4.0	4.7	5.0a-d	6.0d-g	6.0f-h	
G-6	6.0	3.3a-d	4.3bc	4.3	5.3	6.3eg	6.7f-h	6.7gh	
ISI-At-90162	6.3	3.7b-е	5.0b-d	5.0	5.7	5.3b-e	5.7c-f	5.7e-g	
Lopez	6.3	2.7ab	4.3bc	4.0	5.3	4.7a-c	5.0b-d	5.0d-f	
OM-At-90163	6.3	4.0c-f	5.3cd	4.7	5.7	4.7a-c	4.7bc	4.7с-е	
Penncross	6.3	4.3d-f	5.7d	5.0	6.0	5.0a-d	5.0b-d	4.3b-d	
Penneagle	7.3	4.3d-f	5.0b-d	5.3	6.0	6.7f	7.0gh	6.0f-h	
PRO/CUP	6.3	3.3a-d	4.3bc	4.7	5.7	5.7c-f	5.0b-d	5.7e-g	
Providence	6.3	4.7ef	5.7d	4.7	6.0	6.0d-f	7.0gh	7.0h	
Seaside	7.0	5.0f	5.3cd	4.7	4.7	4.0a	3.3a	3.0a	
Southshore	6.0	4.3d-f	5.3cd	4.3	6.0	6.0d-f	6.7f-h	7.0h	
SR 7100	7.7	2.7ab	4.3bc	3.7	5.7	4.3ab	4.3ab	3.7a-c	
Tendez	6.3	3.0a-c	4.0b	3.7	5.3	4.3ab	4.7bc	3.3ab	
Trueline	6.3	3.7b-е	4.3bc	5.0	5.7	5.7c-f	5.7c-f	5.0d-f	

 Table 8. The evaluation of bentgrass cultivars mowed at a fairway height of cut during the 1994 growing season.¹

¹ All values represent the mean of 3 replications. Means in the same column with the same letter are not significantly different at the 0.05 level as determined by Fisher's Protected Least Significant Difference test.

² Spring greenup evaluations are made on a scale of 1-9 where 9 = completely green and actively growing and 1 = dormant.

^{ns} No significant difference was found among the means in this group of data.

³ Quality evaluations are made on a 1-9 scale where 9 = excellent turfgrass quality and 1 = very poor turfgrass quality.

season.	•						
Cultivar	<u>% Poa Annua</u> ² 5-26	<u>Color</u> ³ 9-19	<u>Texture</u> ⁴ 10-05				
BAR AS 493	65.0f	6.3a-d	7.7bc				
BAR Ws 42102	30.0с-е	7.3de	8.0cd				
Cato	20.0a-d	7.7e	8.3de				
Cltvr 18th Green	28.3b-e	7.3de	7.7bc				
Crenshaw	13.3a-c	7.3de	7.3ab				
DF-1	20.0a-d	7.0с-е	8.0cd				
Exeter	20.0a-d	7.0с-е	7.3ab				
G-2	45.0e	7.0с-е	8.0cd				
G-6	30.0с-е	7.3de	8.3de				
ISI-At-90162	28.3b-e	5.3a	8.0cd				
Lopez	35.0de	6.7b-e	7.0a				
OM-At-90163	20.0a-d	6.0a-c	8.0cd				
Penncross	10.0a	7.0с-е	7.0a				
Penneagle	16.7a-c	7.3de	7.7bc				
PRO/CUP	26.7a-d	6.7b-e	7.3ab				
Providence	15.0a-c	7.7e	8.0cd				
Seaside	11.7ab	6.0a-c	7.0a				
Southshore	16.7a-c	7.3de	8.0cd				
SR 7100	45.0e	5.7ab	8.3de				
Tendez	45.0e	5.3a	8.7e				
Trueline	26.7a-d	6.7b-e	7.0a				

Table 9. The evaluation of bentgrass cultivars mowed ata fairway height of cut during the 1994 growing season 1

¹ All values represent the mean of 3 replications. Means in the same column with the same letter are not significantly different at the 0.05 level as determined by Fisher's Protected Least Significant Difference test.

² Percent Poa annua evaluations are a visual estimate of percent of the plot covered with annual bluegrass.

³ Color evaluations are made on a 1-9 scale where $1 = \tan turf$ and 9 = darkest green turf. ⁴ Color evaluations are made on a 1-9 scale where $1 = \tan turf$ and 9 = darkest green turf.

Buffalograss Cultivar Quality Evaluation

T.B. Voigt and J.E. Haley

Research Protocol:	1991 NTEP Buffalograss Cultivar Trials						
Location:	Ornamental Horticulture Research Center, Urbana, IL.						
Site Preparation:	area rotary tilled; fertilized at 1 lb N/M.						
Seeding/ Establishment:	seeding date - June 28, 1991; plugging rate - 6 to 24 plugs/plot; plot size - 7 ft x 7 ft; irrigation - to insure establishment; pesticides - preemergence application of Simazine.						
Plot Maintenance:	mowing height - 2.0 inches;						
1991	pesticides - broad spectrum postemergence broadleaf herbicide; irrigation - none after establishment; fertilization - none after establishment.						
1992	pesticides - broad spectrum postemergence broadleaf herbicide; irrigation - none; fertilization - none.						
1993	pesticides - broad spectrum postemergence broadleaf herbicide, preemergence control with Princep in April and July; irrigation - none; fertilization - none.						
1994	irrigation - none; fertilization - 1 lb N/M in June.						
Experimental Design:	RCB; 3 replications.						

Interest in drought and heat tolerant grasses for Illinois has increased as a result of the severe growing conditions during the 1988 and 1991 growing seasons. Many warm season grasses exhibit great tolerance for hot and dry conditions and limited management inputs. Not all warm season grasses, however, tolerate the winter conditions of Illinois. **Buffalograss** (Buchloe dactyloides) is a warm season species currently receiving turfgrass attention from researchers and managers is tolerant of because it temperature and moisture extremes, is adaptable to many requires sites, limited maintenance, and has few pest problems. This research evaluates the quality of twentytwo buffalograss cultivars and their performance in central Illinois during the 1994 growing seasons.

All plots were installed using plants produced at the University of Nebraska. The plants originated as vegetatively produced clones of a single genotype, or as plants selected from a seeded population. Table 1 provides a list of cultivars planted, their

producers, and whether they have a vegetative or seed origin.

Objectives were formulated for this research. The objectives are:

• to determine if there are differences among the performance twenty-two buffalograss cultivars;

- to determine which buffalograss cultivars perform best in central Illinois; and
- to produce buffalograss cultivar recommendations based on performance.

Buffalograss quality performance can, to a great degree, be related to the weather conditions during the evaluations. Both the 1992 and 1993 growing seasons were wet in Urbana, and the 1992 season was also particularly cool. Under these conditions, cool season grasses and weeds were able to invade warm season grasses and become a greater problem than in typical years. Although buffalograss can perform acceptably under typical conditions, cool season plants less tolerant of heat and drought are very competitive during wet periods. Couple this with cool growing season in 1992 and it is easy to explain the low buffalograss quality ratings. Herbicides can be used to control many of these weeds, but it is questionable if buffalograss warrants increased maintenance and labor inputs. Only individual turf managers can make this decision.

Cultivar	Source	Origin vegetative	
AZ143	University of Arizona		
BAM101	Bamert Seed Company	seeded	
BAM202	Bamert Seed Company	seeded	
Bison	Native Turf Development Group	seeded	
Bufflawn	Quality Turfgrass, Houston, TX	vegetative	
Highlight 15	River City Turf Farm, Sacramento, CA	vegetative	
Highlight 25	The Grass Farm, Morgan Hill, CA	vegetative	
Highlight 4	University of California, Davis	vegetative	
NE 84-315	University of Nebraska	vegetative	
NE 84-436	Crenshaw/Douget Turfgrass, Austin, TX	vegetative	
NE 84-45-3	University of Nebraska	vegetative	
NE 84-609	University of Nebraska	vegetative	
NE 85-378	University of Nebraska	vegetative	
NTDG-1	Native Turf Development Group	seeded	
NTDG-2	Native Turf Development Group	seeded	
NTDG-3	Native Turf Development Group	seeded	
NTDG-4	Native Turf Development Group	seeded	
NTDG-5	Native Turf Development Group	seeded	
Prairie	Texas A & M University	vegetative	
Rutgers	Rutgers University	vegetative	
Sharps Improved	Sharp Brothers Seed, Healy, KS	seeded	
Texoka	original source unknown	seeded	

 Table 11. Cultivar, source, and origin of twenty-two buffalograss cultivars included in the 1992-93 NTEP evaluation in Urbana, Illinois.

During typical Urbana summers, hot, dry periods are common. The 1994 growing season had conditions more typical and ratings were higher than during the past two years.

There were significant differences among the twenty-two cultivars in the evaluation as determine by statistical testing. The overall means for the eleven evaluations appear in Table 2. Means were separated using Fisher's Protected LSD (Table 2).

Based on results of quality evaluations in 1992, 1993 (see 1992 and 1993 Illinois Turfgrass Research Reports) and 1994, it is obvious that there are significant differences among the twenty-two buffalograss cultivars included in the study. In 1994, 'NE 84-315,' 'NE 84-436,' 'NE 84-609,' 'NTDG-3,' 'NTDG-4,' 'NTDG-5' produced above average quality ratings during each of the 5 monthly evaluation periods. When combined with 1992 and 1993 results the cultivars that had above average monthly quality ratings for each of the sixteen evaluations were 'NE 84-315,' 'NTDG 3,' 'NTDG 4,' and 'NTDG 5'. Based on our evaluation criteria, these types produced an acceptable low- to moderate-quality turf, and would be recommended for planting in Illinois.

Cultivar	Spring Greenup ²	<u>Color³</u>	Quality ⁴				
	<u>orthurp</u>		May	June	July	August	Sept
AZ143	3.3ef	3.7b-d	3.0b-d	3.7с-е	4.3e-h	3.7bc	2.7a-c
BAM101	1.0a	4.0с-е	2.0ab	3.3b-d	2.7b-d	3.7bc	4.7fg
BAM202	2.3b-e	4.3с-е	2.3a-c	4.0с-е	4.3e-h	4.0bc	4.3e-g
Bison	1.3ab	4.0c-e	2.7a-c	3.0b-d	3.3с-е	3.7bc	3.3b-e
Bufflawn	1.0a	3.3a-c	1.7a	1.3a	2.0ab	2.0a	2.7a-c
Highlight 15	1.3ab	2.3a	1.7a	1.3a	1.7ab	1.7a	2.0a
Highlight 25	1.0a	3.3a-c	1.7a	2.7a-c	1.0a	2.0a	2.0a
Highlight 4	1.0a	2.7ab	2.0ab	2.0ab	1.7ab	1.7a	2.7ac
NE 84-315	4.0f	3.3a-c	4.0d	4.0c-e	5.0gh	4.0bc	4.0d-g
NE 84-436	3.3ef	4.0c-e	3.3cd	4.3de	4.7f-h	4.3bc	4.0d-g
NE 84-45-3	2.0a-d	3.7b-d	2.3a-c	2.7a-c	2.3bc	3.3b	3.0a-d
NE 84-609	2.7с-е	5.0e	3.0b-d	4.3de	5.3h	4.3bc	5.0g
NE 85-378	3.0d-f	3.3a-c	2.7a-c	5.0e	4.3e-h	4.0bc	3.3b-e
NTDG-1	2.0a-d	3.7b-d	2.3a-c	4.3de	4.3e-h	4.0bc	4.0d-g
NTDG-2	1.3ab	4.0c-e	2.3a-c	4.0c-e	4.3e-h	4.3bc	4.0d-g
NTDG-3	3.0d-f	3.7b-d	3.3cd	5.0e	5.0gh	4.7c	4.0d-g
NTDG-4	2.3b-e	3.7b-d	2.7a-c	4.0c-e	4.7f-h	4.3bc	4.3e-g
NTDG-5	3.0d-f	3.7b-d	3.0b-d	4.3de	4.7f-h	4.0bc	3.7c-f
Prairie	1.3ab	4.7de	2.0ab	4.3de	4.0e-g	4.0bc	4.7g
Rutgers	1.3ab	3.7b-d	1.7a	1.3a	2.0ab	1.7a	2.3ab
Sharps Improved	3.0d-f	3.7b-d	2.3a-c	4.0с-е	4.3e-h	4.0bc	3.7c-f
Texoka	2.3b-e	3.7b-d	2.3a-c	3.0b-d	3.7d-f	3.3b	4.0d-g
LSD.05	1.1	1.1	1.0	1.6	1.1	1.2	1.2

Table 12. Means of twenty-two buffalograss cultivars evaluated for turf quality in 1994.¹

¹All values represent the mean of 3 replications. Means in the same column with the same letter are not significantly different at the 0.05 level as determined by Fisher's Protected Least Significant Difference test.

² Spring greenup evaluations are made on a scale of 1-9 where 9 = completely green and actively growing and 1 = dormant.

³ Color evaluations are made on a 1-9 scale where $1 = \tan \tan 9 = \operatorname{darkest}$ green turf.

⁴Quality evaluations are made on a 1-9 scale where 9 = excellent turfgrass quality and 1 = very poor turfgrass quality.

Weather conditions play a great role in the quality of all twenty-two buffalograss cultivars. When conditions are hot and dry, several buffalograss cultivars can prove to be a serviceable turf. During the 1994 growing season, several of these buffalograsses performed acceptably in June, July and August. All of these buffalograsses, however, were incapable of of out-competing most established weeds, especially cool seson perennial weeds. Thus, to improve buffalograss quality and control weeds, herbicides should be used, but the turf manager must determine if buffalograss is worth this degree of culture. If higher management inputs are an option, there are other grasses capable of producing higher quality turf.

Additional research is planned to further evaluate these twenty-two buffalograss cultivars in varied environmental and management conditions. In the future, a complete package of buffalograss selection, use, and culture recommendations will be developed for Illinois.

1991 NTEP Zoysiagrass Cultivar Trials

T. B. Voigt and J. E. Haley

Research Protocol:	1991 NTEP Zoysiagrass Cultivar Trials
Location:	Ornamental Horticulture Research Center, Urbana, IL.
Site Preparation:	area rotary tilled; fertilized at 1 lb N/M.
Seeding/ Establishment:	seeding date - June 28, 1991 plugging rate - 6 to 24 plugs/plot; plot size - 7 ft x 7 ft; irrigation - to insure establishment; pesticides - preemergence application of Simazine.
Plot Maintenance:	mowing height - 2.0 inches;
1991	pesticides - broad spectrum postemergence broadleaf herbicide; irrigation - none after establishment; fertilization - none after establishment.
1992	pesticides - broad spectrum postemergence broadleaf herbicide; irrigation - none; fertilization - none.
1993	pesticides - broad spectrum postemergence broadleaf herbicide, preemergence control with Princep in April and July; irrigation - none; fertilization - none.
1994	irrigation - none; fertilization - 1 Ilb N/Wyr.
Experimental Design:	RCB; 3 replications.

In the southern portions of the Midwest, warm season grasses often perform better in the summer than cool season grasses. During periods of heat and drought unirrigated Kentucky bluegrasses, fine fescues, and perennial ryegrasses will go dormant, while zoysiagrass, bermudagrass, and buffalograss will continue to grow and provide good quality turf.

Zoysiagrass (Zoysia spp.) is of particular interest due to its many positive attributes. It is extremely heat and drought tolerant; is dense and tough; tolerates wear well; resists weed invasions after establishment; tolerates light to moderate shade; and has limited insect and disease problems. There are. however, some drawbacks to the use of zoysiagrass. These include its short growing season; its brown appearance when dormant (usually from mid October to Mid May in Urbana); its slow growth and high cost of establishment; its ability to invade areas in which it is unwanted; and its high thatch production. Taken in total, zoysiagrass can be a useful turfgrass in the

Midwest, provided its positive attributes are capitalized upon and its negative properties are understood and minimized.

During the summer of 1991, a Zoysiagrass National Turfgrass Evaluation Program (NTEP) study was initiated in Urbana. The twenty-four zoysiagrass cultivars, sources, and origins are listed in Tables 1. The purpose of these trials is to evaluate zoysiagrass selections for their suitability for utility or lawn uses in the northern two-thirds of Illinois, with primary interest in overall turf quality. Data has been collected since 1992, and the evaluation is scheduled to last three to five years.

Cultivar	Source	Origin
Belair	NTEP (Kevin Morris)	vegetative
CD2013	TG Services, Inc. (Jack Murray)	vegetative
CD259-13	TG Services, Inc. (Jack Murray)	vegetative
DALZ8501	Texas A&M University (M. C. Engelke)	vegetative
DALZ8502	Texas A&M University (M. C. Engelke)	vegetative
DALZ8507	Texas A&M University (M. C. Engelke)	vegetative
DALZ8508	Texas A&M University (M. C. Engelke)	vegetative
DALZ8512	Texas A&M University (M. C. Engelke)	vegetative
DALZ8514	Texas A&M University (M. C. Engelke)	vegetative
DALZ8516	Texas A&M University (M. C. Engelke)	vegetative
DALZ8701	Texas A&M University (M. C. Engelke)	vegetative
DALZ9006	Texas A&M University (M. C. Engelke)	vegetative
El Toro	U. of Cal., Riverside (Richard Autio)	vegetative
Emerald	NTEP (Kevin Morris)	vegetative
GT2004	TG Services, Inc. (Jack Murray)	vegetative
GT2047	TG Services, Inc. (Jack Murray)	vegetative
JZ-1 lot A89-1	Jacklin Seed Company	seed
Korean Common Seed	NTEP (Kevin Morris)	seed
Meyer	NTEP (Kevin Morris)	vegetative
Sunburst	Fred Grau	vegetative
TC2033	TG Services, Inc. (Jack Murray)	vegetative
TC5018	TG Services, Inc. (Jack Murray)	vegetative
TGS-B10	TG Services, Inc. (Jack Murray)	seed
TGS-W10	TG Services, Inc. (Jack Murray)	seed

 Table 13. Cultivar, source, and origin of twenty-four cultivars included in the 1991 NTEP zoysiagrass evaluation in Urbana, Illinois.

There were significant differences in overall zoysiagrass quality at each of the five monthly evaluations (Table 2). Zoysiagrass quality performance was evaluated each month, May through September. Overall quality was evaluated on a one through nine scale with one being dead or completely dormant, five being minimally acceptable for lawn use, and nine as being extremely high quality. Ratings were based on turf color, density, rate of spread, texture, and uniformity. In addition, spring greenup ratings were taken in May (1 through 9 scale with 1 being completely brown, 5 being minimally acceptable, and 9 being green and actively growing) and genetic color rating taken in September (1 through 9 scale with 1 being completely brown, 5 being minimally acceptable, and 9 being green and actively growing).

Nine of the selections, 'Belair;' 'CD2013;' 'CD259-13;' 'GT2047;' 'JZ-1;' 'Korean Common;' 'Sunburst;' 'TC5018;' 'TGS-W10;' and 'TGSB10,' produced consistently high quality turf throughout the 1994 growing season. These nine, of the twenty-four in the evaluation, were the only cultivars with quality ratings in the upper half of the entire group at each monthly evaluation.

When combined with 1992 and 1993 data (see 1992 and 1993 Illinois Turfgrass Research Reports), only two cultivars were rated in the upper half of the group at each of the eleven evaluations. These top performers were, 'CD259-13' and 'TC5018.'

In 1994, the overall performance of these grasses surpassed 1992 and 1993. Warmer, drier weather conditions in Urbana favored warm season grass growth during 1994 as compared to the wetter conditions of 1992 and 1993. It is too early, however, to make zoysiagrass recommendations for the northern two-thirds of Illinois. This test will continue for at least two more years, and only after the conclusion of this trial will recommendations be made.

	Spring Greenup ²	Color ³			Quality ⁴		
Cultivar			5/12	6/11	7/29	8/27	9/30
Belair	2.7cd	5.0b-d	2.7de	6.0g	5.7fg	5.3gh	5.3f-h
CD2013	2.0b	4.0a-c	2.7de	3.3cd	4.7d-g	4.3d-g	5.3f-h
CD259-13	3.0d	5.0b-d	3.0e	5.7fg	5.7fg	5.7gh	6.0h
DALZ8501	2.0b	4.7b-d	2.3с-е	1.3ab	3.3a-d	2.0ab	3.0a-c
DALZ8502	1.0a	2.7a	1.0a	2.3bc	2.0a	1.0a	2.0a
DALZ8507	1.0a	6.0d	2.0b-d	1.3ab	3.7b-е	3.3b-e	3.3a-d
DALZ8508	1.0a	5.0b-d	2.0b-d	2.0ab	2.7ab	2.7bc	2.3ab
DALZ8512	1.0a	4.7b-d	2.0b-d	2.3bc	5.0e-g	4.7e-h	6.0h
DALZ8514	1.0a	3.7ab	2.3с-е	2.3bc	3.0a-c	3.7c-f	4.0c-f
DALZ8516	1.0a	2.7a	1.7a-c	1.0a	2.0a	2.0ab	2.0a
DALZ8701	1.0a	3.0a	1.3ab	1.3ab	2.0a	2.0ab	3.0a-c
DALZ9006	1.0a	5.0b-d	2.0b-d	1.0a	3.0a-c	2.3a-c	2.3ab
El Toro	1.0a	5.0b-d	2.0b-d	2.3bc	5.0e-g	4.7e-h	5.0e-h
Emerald	1.0a	5.0b-d	2.0b-d	2.3bc	3.7b-e	3.0b-d	4.0c-f
GT2004	1.3a	5.0b-d	2.0b-d	2.3bc	4.3c-f	3.7c-f	4.3c-g
GT2047	2.3bc	5.0b-d	3.0e	5.0fg	5.3fg	5.0f-h	6.0h
JZ-1 lot A89-1	2.7cd	5.0b-d	3.0e	5.0fg	4.3c-f	5.3gh	5.7gh
Korean Common	3.0d	5.0b-d	3.0e	4.7ef	5.0e-g	5.3gh	6.0h
Meyer	2.0b	4.7b-d	2.7de	3.3cd	3.7b-e	3.3b-e	3.7b-е
Sunburst	2.3bc	4.7b-d	2.7de	3.7de	4.3c-f	3.7c-f	4.7d-h
TC2033	1.0a	6.0d	2.0b-d	2.3bc	2.7ab	3.3b-e	4.0c-f
TC5018	2.7cd	4.7b-d	3.0e	5.7fg	5.7fg	5.3gh	6.0h
TGS-B10	3.0d	4.7b-d	2.7de	5.3fg	4.7d-g	5.0f-h	5.0e-h
TGS-W10	3.0d	5.3cd	3.0e	4.7ef	6.0g	6.0h	6.0h
LSD .05	0.7	1.6	0.8	1.2	1.5	1.5	1.5

Table 14. Quality ratings for the 1991 NTEP zoysiagrass evaluation in Urbana, Illinois during the 1994 growing season.¹

¹All values represent the mean of 3 replications. Means in the same column with the same letter are not significantly different at the 0.05 level as determined by Fisher's Protected Least Significant Difference test.

² Spring greenup evaluations are made on a scale of 1-9 where 9 = completely green and actively growing and 1 = dormant.

³ Color evaluations are made on a 1-9 scale where $1 = \tan turf$ and 9 = darkest green turf.

⁴Quality evaluations are made on a 1-9 scale where 9 = excellent turfgrass quality and 1 = very poor turfgrass quality.

CULTIVAR EVALUATION AT SOUTHERN ILLINOIS UNIVERSITY, CARBONDALE, IL.

NTEP Bentgrass Cultivar Trial

Dr. Kenneth L. Diesburg

Research	
Protocol:	NTEP Bentgrass Cultivar Trial
Location:	Horticulture Research Center,
	Southern Illinois University, Carbondale.
Site:	Hosmer day loam, pH 6.5.
Seeding/	seeding date - September 19, 1993;
Establishment:	seeding rate - 0.5 lb/M;
	plot sixe - n6 ft x 6 ft.
Plot	mowing height - 9/32 inches;
Maintenance:	irrigation - to prevent stress;
	fertilization - 0.2 lb N/M every two weeks during growing season:
	topdressing - once/ month; October and November
	'93; April, May, October, November, '94;
	verticutting - once /month; November '93; April and
May '94.	
Experimental	RCB;
Design:	3 replications.

This is the second national trial of bentgrass cultivars. Advances from breeding have plant resulted in slower leaf elongaion and greater tiller density. It is difficult to achieve these traits and still maintain genetic vigor. During this year of establishment differences in vigor are more apparent than in subsequent years after the turf has matured. This evaluation is for golf course green application on native soil. The majority of older greens in the United States were established on native soil. This is still the

case for many low-budget courses. Greens hold up much better if the root zone is modified to inhibit compaction. But green construction to incorporate drainage, irrigation, and root zone modification is expensive.

		Sector States	Percent	t Stand ¹		
Cultivar	5/6	6/4	7/4	8/9	10/22	Avg
A-4	63	74	78	95	94	81
Syn 92-2-93	55	75	86	90	96	80
Syn 92-5-93	52	77	85	89	92	79
MSUEB	45	71	81	94	87	76
Crenshaw	58	55	82	89	92	75
Southshore	51	67	67	93	96	75
Providence	50	69	74	84	94	74
Regent	57	53	78	89	83	72
Lopez	25	67	78	89	91	70
SR 1020	55	63	63	72	95	70
Penncross	52	76	70	67	83	70
Syn 92-1-93	33	63	83	68	89	67
A-1	58	50	63	77	86	67
L-93	41	53	77	80	83	67
Syn-1-88	57	71	55	58	84	65
DG-P	30	42	73	88	91	65
G-2	38	49	67	77	92	64
Pennlinks	18	55	74	84	90	64
Cato	33	52	65	64	88	60
G-6	30	45	68	69	90	60
18th Green	26	36	82	63	84	58
Tendez	8	40	70	79	88	57
BAR Ws 42102	14	37	80	74	73	56
BAR As 493	39	43	62	53	79	55
PRO/CUP	22	55	56	55	87	55
ISI-Ap-89150	19	42	75	65	64	53
Seaside	34	54	48	38	75	50
Trueline	11	23	57	39	59	38
LSD 0.05	34	24	21	34	22	8

Table 1. Bentgrass cultivar performance

			Juality ¹	
Cultivar	8/9	9/10	10/22	Average
Syn 92-2-93	6.0	7.3	7.7	7.0
A-4	6.0	6.7	8.3	7.0
Crenshaw	6.3	6.7	7.3	6.8
Syn-92-5-93	5.7	7.0	7.0	6.6
Pennlinks	5.3	6.7	7.7	6.6
MSUEB	6.7	6.3	6.3	6.4
L-93	5.7	6.0	7.3	6.3
Southshore	5.3	7.3	6.3	6.3
Providence	5.3	7.3	6.3	6.3
Syn-92-1-93	4.3	6.3	8.0	6.2
A-1	4.7	6.3	7.0	6.0
Lopez	5.0	5.7	7.0	5.9
DĜ-P	5.0	5.7	7.0	5.9
G-2	4.3	5.7	7.3	5.8
Regent	5.3	6.3	5.7	5.8
G-6	4.0	6.0	7.0	5.7
Penncross	4.0	6.0	6.7	5.6
SR 1020	3.7	6.0	7.0	5.6
Fendez	5.0	6.0	5.0	5.3
BAR Ws 42102	4.0	5.3	6.7	5.3
PRO/CUP	3.3	4.7	7.3	5.1
Cato	4.0	4.3	7.0	5.1
ISI-Ap-89150	3.7	4.7	5.7	4.7
Syn-1-88	3.3	5.7	4.7	4.6
18th Green	3.7	4.3	4.0	4.0
Frueline	2.3	3.7	6.0	4.0
BAR As 493	2.0	4.0	4.0	3.3
Seaside	2.0	4.7	3.0	3.2
LSD 0.05	1.9	2.4	2.5	0.8

Table 2. Bentgrass cultivar performance.

¹ Quality evaluations are made on a 1-9 scalewhere 9=excellent turfgrass quality and 1=verypoor turfgrass quality.

NTEP Tall Fescue Cultivar Trial

Dr. Kenneth L. Diesburg

Location:	Southern Illinois University, Carbondale, IL.
Site:	Hosmer Silt Clay Loam.
Plot Maintenance:	mowing height - 2.25 inches; pesticides - preemergent, Ronstar in April; and
mannenanee.	Barricade in June; postemergent, Turflon D in March; irrigation - none;
	fertilization - 4 lb N/M/yr, SCU, Nitroform, and Nutralene

Tall fescue is the dominant turfgrass species in southern Illinois. The combination of prolonged hot summer, poor soil, and periodic drought make the environment too harsh for Kentucky bluegrass in non-irrigated areas. Tall fescue becomes the coolseason species of choice.

There has been a proliferation of tall fescue cultivars with the advent of the turf-type material. The most recent assemblage of cultivars from the USDA was planted at selected sites across the country in 1992. Among them is the first tall fescue cultivar developed from the turfgrass breeding program at Southern Illinois University, SIU-1.

Brown Patch pressure was not as severe this year as in the year of maturation of this trial, 1993. Nonetheless, there was enough pressure to differentiate cultivar tolearance. Tolerance to Brown Patch is the major factor influencing turfgrass quality ratings during the warmer months, June to September. Cultivars that otherwise have great color and density never did get ahead of the disease.

			т	urf Quali	tv ²			Brown Patch ³
Cultivar	4/28	6/3	7/4	8/11	9/10	10/22	Avg	%
MB-25-92	7.0	8.7	9.0	6.7	8.0	8.0	7.89	27
Jaguar 3	7.0	7.0	9.0	6.7	8.0	8.3	7.67	36
WXI-208-2	6.7	8.0	7.7	7.3	8.0	8.3	7.67	18
Coronado	7.7	8.3	9.0	5.7	7.0	8.3	7.67	41
Lexus	7.7	8.7	9.0	5.3	7.3	7.7	7.61	59
Falcon 2	7.0	8.3	7.3	6.7	7.7	8.3	7.56	27
Apache 2	6.3	7.7	9.0	6.3	8.0	7.7	7.50	35
MB-23-92	7.3	7.3	8.0	6.3	8.7	7.0	7.44	37
Pick 90-6	6.7	8.7	8.3	5.7	6.7	8.3	7.39	50
Emperor	8.3	7.3	8.3	4.7	7.7	8.0	7.39	35
Pixie	7.3	8.0	8.7	5.3	7.3	7.3	7.33	32
PST-5DX	6.0	7.3	8.7	5.7	7.7	8.0	7.22	25
w/endophyte								-
GEN-91	.7	8.0	8.0	4.7	7.3	7.7	7.22	32
Houndog V	7.0	7.0	8.0	5.7	8.0	7.7	7.22	43
ZPS-VL	7.3	7.7	8.7	5.0	6.7	7.7	7.17	78
PRO-9178	7.7	7.7	7.7	5.0	7.3	7.7	7.17	20
Virtue	7.0	7.7	7.3	5.0	7.7	8.3	7.17	12
Pyramid	6.7	7.7	7.7	6.0	6.7	8.0	7.13	28
Tomahawk	8.0	7.3	7.7	5.3	7.7	6.7	7.11	19
MB-22-92	6.3	7.3	7.3	6.3	7.3	8.0	7.11	34
Coyote	7.0	7.7	8.0	6.0	7.0	7.0	7.11	39
Trailblazer II	7.0	7.7	7.3	5.7	7.0	8.0	7.11	37
Pick 90-12	7.0	7.3	8.7	4.7	8.0	7.0	7.11	40
QS-ST2	7.0	7.0	6.3	6.7	7.7	7.7	7.06	15
Pick 90-10	6.3	8.3	8.7	4.7	6.7	7.7	7.06	57
BAR Fa0855	7.0	6.7	7.0	5.7	8.3	7.7	7.06	34
MB-24-92	6.7	7.3	7.0	6.3	7.3	7.3	7.00 7.00	44 44
Lancer	6.7	6.7 6.7	8.0 7.3	5.7 5.3	7.0 8.0	8.0 8.0	6.94	28
ISI-AFA	6.3 7.7	6.3	7.0	5.5	7.3	7.7	6.94	28 16
M-2 Densei Dlus	6.7	0.3 7.0	7.0	5.0	7.3	8.0	6.94 6.94	40
Bonsai Plus	6.7	7.0	8.7	4.7	7.0	7.0	6.89	40 62
ATF-007	0.3 7.7	7.7	6.0	4.7 5.7	7.0	7.0	6.89	37
PST-5LX								
FA-19	6.3	7.0	8.7	4.7	7.3	7.3	6.89	49
LSD 0.05	1.6	1.8	2.0	1.7 tinued)	2.0	1.9	1.5	37

Table 3. Performance of tall fescue cultivars¹

¹ All values represent the mean of three replications. Means within a column that result in a difference less than the LSD given at the bottom of that column when subtracted from any other mean within the column are not different from that mean.

 ² Turf quality is based on a 1-9 scale where 1=very poor turfgrass quality and 9=excellent turfgrass quality.
 ³ Percent of plot showing symptoms of brown patch.

		т	urf Quali	tv2			Brown Patch ³
4/28	6/3	7/4	8/11	9/10	10/22	Avg	%
7.7							37
							26
							28
							18
							41
							63
							58
							65
							61
							37
7.0	6.7		6.0	7.7		6.67	73
6.3	7.7	8.3	4.7	6.0		6.61	47
7.3	6.3	7.3	5.3	7.0	6.3	6.61	19
7.3	6.0	5.3	6.7	7.0	7.0	6.56	22
6.7	6.7	6.7	5.7	6.3	7.3	6.56	44
7.0	6.3	7.0	5.0	6.7	7.0	6.50	47
6.3	6.0	7.3	5.3	6.7	7.3	6.50	37
5.3	6.0	7.0	6.3	7.7	6.3	6.44	50
6.3	6.0	8.0	4.3	7.0	6.7	6.39	45
6.3	6.0	6.0	5.7	7.3	7.0	6.39	22
5.3	6.0	7.0	5.7	7.3	7.0	6.39	14
6.3	7.0	6.7	5.3	6.3	6.7	6.39	12
6.3	6.0	6.7	5.7	7.0	6.7	6.39	18
6.0	7.3	8.0	4.7	6.0	6.3	6.39	55
5.7	6.0	6.0	5.7	7.3	7.3	6.33	17
6.3	5.7	7.7	5.3	6.7	6.3	6.33	68
7.0	5.7	6.0	6.0	6.7	6.3	6.28	69
7.0	5.3	5.3	4.7	8.0	7.0	6.22	30
6.0	6.0	6.3	5.0	7.0	7.0	6.22	23
6.0	7.3	7.0	3.7	5.7	7.7	6.22	47
6.7	3.3	7.0	5.3	7.7	7.3	6.22	24
6.3	6.7	5.7	6.0	6.7	6.0	6.22	22
1.6	1.8	2.0	1.7	2.0	1.9	1.5	37
	$\begin{array}{c} 7.7\\ 7.3\\ 7.3\\ 6.7\\ 6.3\\ 7.7\\ 5.0\\ 5.7\\ 6.7\\ 7.0\\ 7.0\\ 6.3\\ 7.3\\ 6.7\\ 7.0\\ 6.3\\ 5.3\\ 6.3\\ 6.3\\ 6.3\\ 6.3\\ 6.3\\ 6.3\\ 6.3\\ 6$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4/28 $6/3$ $7/4$ 7.7 5.0 8.0 7.3 6.3 6.0 7.3 6.7 6.7 6.7 5.7 8.7 6.3 6.7 7.3 7.7 8.0 6.3 5.0 7.7 8.3 5.7 7.0 8.0 6.7 8.0 7.3 7.0 6.7 7.7 7.0 6.7 7.7 7.0 6.7 7.7 7.0 6.7 7.7 7.0 6.7 7.7 7.0 6.7 6.7 6.3 7.7 8.3 7.3 6.3 7.3 7.3 6.3 7.3 7.3 6.3 7.3 7.3 6.3 7.0 6.3 6.0 7.3 5.3 6.0 7.0 6.3 6.0 6.7 6.3 6.0 6.7 6.3 6.0 6.7 6.3 6.0 6.7 6.3 6.0 6.7 6.3 6.0 6.7 6.3 5.7 6.0 7.0 5.7 6.0 7.0 5.7 6.0 7.0 5.7 6.0 7.0 5.7 6.0 7.0 5.7 6.0 6.7 3.3 7.0 6.7 3.3 7.0 6.7 5.7 6.7 7.7 7.6 7.7 7.0 5.7 6.0 <	4/28 $6/3$ $7/4$ $8/11$ 7.75.08.05.77.3 6.3 6.0 5.77.3 6.7 6.7 5.0 6.7 5.7 8.7 4.3 6.3 6.7 7.3 6.0 7.7 8.0 6.3 5.0 7.7 8.0 6.3 5.0 5.0 7.7 8.3 4.7 5.7 7.0 8.0 5.3 6.7 8.0 7.3 5.3 7.0 6.7 7.7 5.3 7.0 6.7 7.7 5.3 7.0 6.7 6.7 6.7 6.7 6.7 6.7 5.7 7.0 6.3 7.0 5.0 6.3 7.0 5.3 6.7 6.7 6.7 5.7 7.0 6.3 6.0 5.3 6.7 6.3 6.0 7.3 5.3 5.3 6.0 7.0 5.3 6.3 6.0 6.7 5.7 6.3 6.0 6.7 5.7 6.3 6.0 6.7 5.7 6.0 7.3 8.0 4.7 5.7 6.0 6.0 5.7 6.3 5.7 7.7 5.3 7.0 5.3 5.3 4.7 5.7 6.0 6.0 5.7 6.3 5.7 7.7 5.3 7.0 5.3 5.3 4.7 5.7 6.0 <t< td=""><td>7.7$5.0$$8.0$$5.7$$7.7$$7.3$$6.3$$6.0$$5.7$$8.0$$7.3$$6.7$$6.7$$5.0$$8.3$$6.7$$5.7$$8.7$$4.3$$7.3$$6.3$$6.7$$7.3$$6.0$$7.0$$7.7$$8.0$$6.3$$5.0$$7.3$$5.0$$7.7$$8.3$$4.7$$7.0$$5.7$$7.0$$8.0$$5.3$$7.3$$6.7$$8.0$$7.3$$5.3$$6.3$$7.0$$6.7$$7.7$$5.3$$6.7$$7.0$$6.7$$7.7$$5.3$$6.7$$7.0$$6.7$$6.0$$6.0$$7.7$$6.3$$7.7$$8.3$$4.7$$6.0$$7.3$$6.3$$7.3$$5.3$$7.0$$6.3$$7.7$$8.3$$4.7$$6.0$$7.3$$6.0$$5.3$$6.7$$7.0$$6.7$$6.7$$5.7$$6.3$$7.0$$6.7$$6.7$$5.7$$6.3$$7.0$$6.3$$7.0$$5.7$$6.3$$6.0$$7.0$$5.7$$7.3$$6.0$$7.0$$5.7$$7.3$$6.0$$7.7$$7.3$$6.0$$7.7$$7.3$$6.0$$7.7$$7.3$$6.0$$7.7$$7.3$$6.0$$7.7$$7.3$$6.0$$7.7$$7.3$$6.0$$7.7$$7.7$$6.3$$6.0$$7.7$$7.7$</td><td>4/28$6/3$$7/4$$8/11$$9/10$$10/22$7.75.08.05.77.77.37.36.36.05.78.07.77.36.76.75.08.37.06.75.78.74.37.37.76.36.77.36.07.07.07.78.06.35.07.36.05.07.78.34.77.07.75.77.08.05.37.36.76.78.07.35.36.36.37.06.77.75.36.76.77.06.77.75.36.76.77.06.77.75.36.76.77.06.76.76.76.76.77.36.37.35.37.06.37.36.05.36.77.07.06.37.78.34.76.06.77.36.37.35.37.07.06.76.75.76.37.37.06.36.07.05.77.37.06.36.07.05.77.37.06.36.07.05.77.37.06.36.07.77.37.37.06.36.06.75.77.06.76.36.06.75.77.06.7</td><td>4/28 $6/3$ $7/4$ $8/11$ $9/10$ $10/22$ Avg 7.7 5.0 8.0 5.7 7.7 7.3 6.89 7.3 6.3 6.0 5.7 8.0 7.7 6.83 7.3 6.7 6.7 5.0 8.3 7.0 6.83 6.7 5.7 8.7 4.3 7.3 7.7 6.72 6.3 6.7 7.3 6.0 7.0 6.72 5.0 7.7 8.0 5.3 7.3 6.0 6.72 5.7 7.0 8.0 5.3 7.3 6.7 6.72 5.7 7.0 8.0 5.3 7.3 6.67 6.72 5.7 7.0 8.0 5.3 7.3 6.72 6.72 5.7 7.0 8.0 5.3 6.7 6.76 6.72 7.0 6.7 7.7 <t< td=""></t<></td></t<>	7.7 5.0 8.0 5.7 7.7 7.3 6.3 6.0 5.7 8.0 7.3 6.7 6.7 5.0 8.3 6.7 5.7 8.7 4.3 7.3 6.3 6.7 7.3 6.0 7.0 7.7 8.0 6.3 5.0 7.3 5.0 7.7 8.3 4.7 7.0 5.7 7.0 8.0 5.3 7.3 6.7 8.0 7.3 5.3 6.3 7.0 6.7 7.7 5.3 6.7 7.0 6.7 7.7 5.3 6.7 7.0 6.7 6.0 6.0 7.7 6.3 7.7 8.3 4.7 6.0 7.3 6.3 7.3 5.3 7.0 6.3 7.7 8.3 4.7 6.0 7.3 6.0 5.3 6.7 7.0 6.7 6.7 5.7 6.3 7.0 6.7 6.7 5.7 6.3 7.0 6.3 7.0 5.7 6.3 6.0 7.0 5.7 7.3 6.0 7.0 5.7 7.3 6.0 7.7 7.3 6.0 7.7 7.3 6.0 7.7 7.3 6.0 7.7 7.3 6.0 7.7 7.3 6.0 7.7 7.3 6.0 7.7 7.7 6.3 6.0 7.7 7.7	4/28 $6/3$ $7/4$ $8/11$ $9/10$ $10/22$ 7.75.08.05.77.77.37.36.36.05.78.07.77.36.76.75.08.37.06.75.78.74.37.37.76.36.77.36.07.07.07.78.06.35.07.36.05.07.78.34.77.07.75.77.08.05.37.36.76.78.07.35.36.36.37.06.77.75.36.76.77.06.77.75.36.76.77.06.77.75.36.76.77.06.76.76.76.76.77.36.37.35.37.06.37.36.05.36.77.07.06.37.78.34.76.06.77.36.37.35.37.07.06.76.75.76.37.37.06.36.07.05.77.37.06.36.07.05.77.37.06.36.07.05.77.37.06.36.07.77.37.37.06.36.06.75.77.06.76.36.06.75.77.06.7	4/28 $6/3$ $7/4$ $8/11$ $9/10$ $10/22$ Avg 7.7 5.0 8.0 5.7 7.7 7.3 6.89 7.3 6.3 6.0 5.7 8.0 7.7 6.83 7.3 6.7 6.7 5.0 8.3 7.0 6.83 6.7 5.7 8.7 4.3 7.3 7.7 6.72 6.3 6.7 7.3 6.0 7.0 6.72 5.0 7.7 8.0 5.3 7.3 6.0 6.72 5.7 7.0 8.0 5.3 7.3 6.7 6.72 5.7 7.0 8.0 5.3 7.3 6.67 6.72 5.7 7.0 8.0 5.3 7.3 6.72 6.72 5.7 7.0 8.0 5.3 6.7 6.76 6.72 7.0 6.7 7.7 <t< td=""></t<>

Table 3. Performance of tall fescue cultivars¹ (continued)

¹ All values represent the mean of three replications. Means within a column that result in a difference less than the LSD given at the bottom of that column when subtracted from any other mean within the column are not different from that mean.

² Turf quality is based on a 1-9 scale where 1=very poor turfgrass quality and 9=excellent turfgrass quality. ³ Percent of plot showing symptoms of brown patch.

			Т	urf Quali	tv ²			Brown Patch ³
Cultivar	4/28	6/3	7/4	8/11	9/10	10/22	Avg	%
Rebel-3D	7.0	6.0	5.0	5.0	6.3	7.7	6.17	18
Cochise	6.7	6.0	5.3	5.3	7.0	6.7	6.17	35
Pick CII	6.3	5.3	6.7	5.0	6.0	7.3	6.11	27
Guardian	6.3	5.7	3.7	5.7	7.3	8.0	6.11	14
ICI-CRC	5.3	5.7	6.0	4.7	7.3	7.7	6.11	18
Olympic II	6.0	5.0	6.0	5.3	7.3	6.7	6.06	27
PSTF-200	5.3	5.3	6.3	5.3	7.7	6.3	6.06	13
ISI-ATK	5.3	5.3	6.7	4.3	6.3	8.0	6.00	17
Finelawn 88	7.3	5.0	6.3	4.0	6.7	6.3	5.94	28
Montauk	5.7	6.0	7.0	4.3	7.0	5.7	5.94	52
BAR Fa 214	5.3	5.3	5.3	5.7	7.3	6.7	5.94	43
CAS-MA21	6.0	6.3	5.0	5.3	6.3	6.3	5.89	36
Duke	5.7	6.7	6.3	5.0	5.0	6.3	5.83	17
PSTF-401	5.7	5.3	5.7	5.0	7.3	5.7	5.78	16
Alamo	5.7	6.3	5.7	4.7	6.0	6.3	5.78	24
SR 8300	6.7	5.0	5.3	5.7	6.0	5.7	5.72	35
Cafa101	7.0	4.0	4.7	5.0	7.0	6.3	5.67	17
QS-RH2	4.7	6.0	5.7	5.0	6.3	6.0	5.61	34
Bonanza II	5.7	5.3	5.3	4.0	6.7	5.7	5.44	78
Astro 2000	5.7	4.0	5.3	4.7	7.0	6.0	5.44	34
Austin	6.3	4.7	4.7	4.0	6.7	5.7	5.33	18
PSTF-LF	5.7	4.7	5.3	4.7	6.0	5.7	5.33	21
Bonanza	5.3	3.7	3.3	5.3	7.0	6.3	5.17	51
Phoenix	6.0	4.0	3.7	4.7	6.7	5.3	5.06	12
Cambridge	5.7	4.7	4.3	3.7	5.3	5.7	4.89	36
Falcon	4.3	4.0	3.0	3.3	5.7	5.0	4.22	23
Arid	3.7	3.3	3.3	4.0	6.3	4.3	4.17	22
Anthem	3.3	4.0	2.7	3.0	4.3	6.0	3.89	7
Ky-31 w/endo	3.0	2.7	2.0	3.0	3.3	2.7	2.78	9
Ky-31 wo/endo	3.3	2.0	2.3	2.7	3.3	2.3	2.67	14
Aztec	2.0	1.3	1.3	1.7	2.0	2.7	1.83	22
Alta	1.0	0.7	0.7	1.2	2.3	4.5	1.72	11
LSD 0.05	1.6	1.8	2.0	1.7	2.0	1.9	1.5	37

Table 3. Performance of tall fescue cultivars¹ (continued)

¹ All values represent the mean of three replications. Means within a column that result in a difference less than the LSD given at the bottom of that column when subtracted from any other mean within the column are not different from that mean. ² Turf quality is based on a 1-9 scale where 1=very poor turfgrass quality and 9=excellent turfgrass quality. ³ Percent of plot showing symptoms of brown patch.

Low Input Sustainable Turf (LIST)

Dr. Kenneth L. Diesburg

Research Protocol:	Low Input Sustainable Turf (LIST)
Locations:	Ohio, Indiana, Illinois, Michigan, Wisconsin, Minnesota, Iowa, Missouri, Kansas, Nebraska, North Dakota.
Seeding	cool season grasses - 9/21/92;
Dates:	warm season grasses - 5/2/93.
Species:	1. sheep fescue
	2. redtop
	3. Kentucky bluegrass
	4. buffalograss
	5. tall fescue
	6. hard fescue
	7. colonial bentgrass
	8. zoysiagrass.
Mowing	1. alternate weeks
Frequencies:	2. once per month
	3. twice per year.
Site	pesticides - preemergent (Tupersan) on cool season
Preparation:	grasses;
	fertilization - 1/2. Ib N/M (1-4-1) starter in spring.
Plot	fertilization - 1 lb N/M/yr, SCU;
Maintenance:	mowing height - 3 inchers;
	pesticides - none;
	inigation - none.
Experimental	strip-plot;
Design:	3 replications

The emphasis in turfgrass management of the 1990s is one of efficient utilization of resources in obtaining the turf needed or desired while minimizing pollution of the environment. In low-management situations the turf desired is uniform. persistent cover with turfgrass color, texture, and density taking lower priority. The conclusion of the Alternative Species Project during 1991 identified five perennial grass species best suited to this purpose. The study was conducted in eleven states of the upper midwest United States, so we are confident that these species would be appropriate over a broad geographic area. A 3-inch clipping height allowed best species performance.

In the next phase of this program we are evaluating the same five species plus three others under three different schedules of clipping frequency. Many times in low-management situations

the manager prefers to mow as few times as possible. We are observing just how damaging an infrequent clipping schedule compares to a more frequent clipping schedule in terms of turfgrass cover and persistence.

Buffalograss and zoysiagrass were planted during May 1993 but establishment was poor in two of the three replications. Their performance during 1994 was, therefore, poor. During spring tall fescue had the best turf quality due to its vegetative vigor. Redtop`Barricuda', Colonial Bentgrass Experimental, and Red Fescue`Cindy' performed just as well. During summer stress tall fescue and `Cindy' had lower turf quality while Hard Fescue`9032', Colonial Bentgrass`Exeter', and Hard Fescue'Scaldis' were among the best entries. Near the end of the season colonial bentgrass performed significantly better than any other entry.

Clipping every other week favored Colonial Bentgrass Experimental during spring and fall. It favored all the fine fescues during spring. But it caused lower turf quality in tall fescue during the fall. Clipping once per month favored Redtop`Streaker' and Sheep Fescue during summer, and it favored Red Fescue`Cindy', the redtops, and Zoysiagrass during fall. Clipping twice per year failed to improve turfgrass quality for any of the entries.

		Turf Q	Quality ²	
Species/Cultivar	Alternate Weeks	Once/ Month	Twice/ Year	Average
Tall Fescue w/endo`Kentucky-31'	6.8	5.7	5.2	5.9
Tall Fescue wo/endo`Kentucky-31'	5.8	5.8	5.7	5.8
Redtop`Barricuda'	5.5	4.7	6.2	5.4
Colonial Bentgrass Experimental	6.3	4.7	5.0	5.3
Red Fescue`Cindy"	5.3	5.7	4.7	5.2
Hard Fescue Scaldis'	6.0	5.5	3.8	5.1
Redtop`Streaker'	5.3	4.7	4.8	4.9
Colonial Bentgrass'Exeter'	5.2	5.3	4.0	4.8
Hard Fescue 9032'	5.0	4.7	4.8	4.8
Hard Fescue`Valda'	5.2	4.7	4.2	4.7
Sheep Fescue	5.2	4.7	3.5	4.4
Kentucky Bluegrass SD Common'	3.5	4.5	4.0	4.0
Zoysiagrass Chinese Common'	3.8	4.0	3.2	3.7
Buffalograss Sharps Improved	2.3	2.2	1.7	2.1
LSD 0.05	0.8	0.8	0.8	0.8

Table 4. Performance of LIST species during spring¹.

Table 5. Performance of LIST species during summer.¹

	Turf Quality ²					
Species/Cultivar	Alternate Weeks	Once/ Month	Twice/ Year	Average		
Colonial Bentgrass Experimental	6.2	5.8	6.2	6.1		
Redtop`Barricuda'	5.2	5.8	6.7	5.9		
Colonial Bentgrass 'Exeter'	5.0	5.8	5.5	5.4		
Hard Fescue '9032'	5.7	4.7	5.0	5.1		
Hard Fescue 'Scaldis'	5.5	5.3	4.0	4.9		
Tall Fescue w/endo `Kentucky-31'	4.5	4.8	5.2	4.8		
Red Fescue `Cindy'	4.2	5.2	4.5	4.6		
Redtop `Streaker'	3.5	5.5	3.7	4.2		
Hard Fescue 'Valda'	4.8	4.3	3.0	4.1		
Zoysiagrass' Chinese Common'	3.7	4.3	3.3	3.8		
Sheep Fescue	3.7	4.8	3.0	3.7		
Tall Fescue wo/endo `Kentucky-31'	3.5	3.8	3.7	3.7		
Kentucky Bluegrass 'SD Common'	2.5	3.2	2.8	2.8		
Buffalograss Sharps Improved'	2.8	2.8	1.3	2.3		
LSD 0.05	1.2	1.2	1.2	1.2		

¹ All values represent the mean of three replications. Means within a column that result in a difference less than the LSD given at the bottom of that column when subtracted from any other mean within the column are not different from that mean.

² Ratings based on a scale of 1 to 9, 9=uniform and complete stand and 1=no stand.

	Turf Quality ²					
Species/Cultivar	Alternate Weeks	Once/ Month	Twice/ Year	Average		
Colonial Bentgrass Experimental	8.7	7.3	7.7	7.9		
Colonial Bentgrass 'Exeter'	7.0	6.7	6.7	6.8		
Red Fescue `Cindy'	5.7	7.3	5.3	6.1		
Hard Fescue `9032'	6.3	6.0	6.0	6.1		
Tall Fescue w/endo `Kentucky-31'	5.0	6.3	6.7	6.0		
Hard Fescue 'Scaldis'	6.3	5.7	4.0	5.3		
Tall Fescue wo/endo `Kentucky-31'	4.0	5.3	6.0	5.1		
Redtop 'Barricuda'	4.3	6.0	5.0	5.1		
Sheep Fescue	4.3	4.7	4.0	4.3		
Hard Fescue 'Valda'	4.7	4.7	3.7	4.3		
Zoysiagrass' Chinese Common'	4.0	5.7	3.3	4.3		
Redtop `Streaker'	3.7	5.3	4.0	4.3		
Buffalograss Sharps Improved	3.3	4.0	3.0	3.4		
Kentucky Bluegrass SD Common'	3.0	3.0	2.0	2.7		
LSD 0.05	1.2	1.2	1.2	1.2		

Table 6. Performance of LIST species during fall.¹.

¹ All values represent the mean of three replications. Means within a column that result in a difference less than the LSD given at the bottom of that column when subtracted from any other mean within the column are not different from that mean.

 $^{^{2}}$ Ratings based on a scale of 1 to 9, 9=uniform and complete stand and 1=no stand.

TURFGRASS MANAGEMENT EVALUATIONS AT THE UNIVERSITY OF ILLINOIS

Tall Fescue Management

J.E. Haley and T.B. Voigt

Fertility	0 lb N/M;
Treatments:	2 lbs N/Wyr applied 1 lb in May & Sept; 4 lbs N/Wyr applied 0.5 lb in June, July & 1 lb in May, Aug., Oct.;
	6 lbs N/M/yr applied 0.5 lb Apr, July & 1 lb in May, June, Aug., Sept., Oct.; fertilizers were broadcast by hand.
Mowing	1 inch, 2 inches, 3 inches mowing height;
Treatments:	A rotary mower is used and clippings were removed and discarded.
Experimental	strip plot (fertilization, randomized in block,
Design:	mowing height stripped); 3 replications.
Location:	Omamental Horticulture Research Center, Urbana, IL

Research indicates that improved tall fescue cultivars have retained good drought, heat, and wear tolerance. However, it is not yet known how management practices effect the overall quality of these improved cultivars. The purpose of this study is to evaluate the effects of nitrogen fertilization and mowing height on the quality of turf-type tall fescue. Quality and weed population evaluations are reported in Table 1 and 2.

Tall fescue quality was highest where the turf was fertilized with 4 or 6 lbs of nitrogen annually and when mowed at 2 or 3 inches in height. Annual bluegrass (*P. annua*)

Fertility	Quality ²							
Level ³	4/25	5/26	7/08	8/05	9/01	9/28		
0 lb	3.3a	4.2a	3.1a	4.0a	3.4a	3.8a		
2 lbs	4.6b	4.6a	4.6b	4.9a	4.4b	5.0b		
4 lbs	6.0c	5.6b	5.4c	6.3b	6.2c	6.0b		
6 lbs	6.3c	5.8b	6.7d	6.2b	6.4c	6.1b		

 Table 1. The evaluation of 4 fertility levels and 3 mowing heights when applied to a tall fescue turf blend during the 1994 growing season.¹

¹All values represent the mean of 3 replications. Means in the same column with the same letter are not significantly different at the 0.05 level as determined by Fisher's Protected Least Significant Difference test.

²Quality evaluations are made on a 1-9 scale where 9 = excellent turfgrass quality and 1 = very poor turfgrass quality.

³Fertility refers to the total amount of nitrogen in pounds per 1000 square feet applied annually.

Tall Fescue Management Evaluation
establishment date - spring, 1989; turf - mature Triathalawn tall fescue (Bonanza, Olympia, and Apache blend); plot size - 5 ft x 6 ft; pesticides - none.
pesticides - none, weeded by hand 8/89; irrigation - none;
fertilization - treatments applied on May 10, June 1, June 22, July 14, Aug. 11 Sept. 12, Oct. 11.
fertilization - treatments applied on Apr. 17, May 18, June 21, July 11, Sept. 13 & Oct. 19.
fertilization - treatments applied on Apr. 26, May 28, June 20, Aug. 5, Aug. 28, Sept. 26, Oct. 21.
fertilization - treatments applied on Apr. 23, May 17, June 16, July 15, Aug. 21, Sept. 22, Oct. 15.
fertilization - treatments applied on Apr. 20, May 19, June 16, July 15, Aug. 23, Sept. 1 6, Oct. 19.
fertilization - treatments applied on Apr. 27, May 27, June 23, July 18, Aug. 17, Sept. 1 5, Oct. 17.

populations were greatest in tall fescue maintained at a 1 or 2 inch mowing height. There was no significant difference among annual bluegrass populations at the 4 levels of nitrogen fertilization. Mowing height effected crabgrass invasion. Crabgrass populations increased as mowing height decreased. Broadleaf weed populations were largely effected by nitrogen fertilization. Tall fescue that was not fertilized had significantly higher broadleaf weed populations than turf fertilized with any rate of nitrogen. Turf fertilized at 2 lbs N/M/vr had significantly more broadleaf weeds than turf fertilized at 6 lbs N/M/yr. Broadleaf weed populations consisted primarily of white clover. Based on these preliminary results, it appears that improved tall fescue cultivars benefit from nitrogen fertilization. Even a low annual rate of nitrogen fertilization decrease broadleaf weed can populations and reduce or eliminate the need for herbicide control. Tall fescue should be mowed at a minimum of 2 inches in height.

Table 1.	The evaluation of 4 fertility levels and 3 mowing heights when applied to
	a tall fescue turf blend during the 1994 growing season. ¹ (continued)

Mowing Height				Quality ²		-
	4/25	5/26	7/08	8/05	9/01	9/28
1 inch	3.8a	3.8a	3.4a	3.7a	3.8a	3.1a
2 inches	5.6b	5.2b	5.0b	5.6b	5.3b	5.8b
3 inches	5.8b	6.0b	6.4c	6.8c	6.3b	6.8c

¹All values represent the mean of 3 replications. Means in the same column with the same letter are not significantly different at the 0.05 level as determined by Fisher's Protected Least Significant Difference test.

² Quality evaluations are made on a 1-9 scale where 9 = excellent turfgrass quality and 1 = very poor turfgrass quality.

Fertility Level ⁵	<u>% Poa annua</u> ² 4/25 ^{ns}	<u>% Crabgrass</u> ³ 8/9ns	<u>% Broadleaf</u> 4 8/9	
0 lb	0.2	4.7	48.9c	
2 lbs	6.9	10.6	18.9b	
4 lbs	8.3	8.9	6.6ab	
6 lbs 9.4		7.9	1.2a	
Mowing Height	<u>% Poa annua</u> 4/25	% Crabgrass 8/9	<u>% Broadleaf</u> 8/9 ^{ns}	
1 inch	16.4b	18.8c	22.6	
2 inches	2.2a	4.8b	18.8	

Table 2.	The evaluation of weed invasion in a tall fescue turf blend maintained
	at 4 fertility levels and 3 mowing heights during the 1994 growing
	season. ¹

An Evaluation of Turf Quality and Home Owner Satisfaction Resulting From Five Turf Management Programs

J.E. Haley, T.B. Voigt, W. C. Sullivan and Irene Miles

There are approximately 49.8 million owner-occupied, single family homes in the U. S. (Watson et. al., 1992) and more than twenty million acres of lawns in the United States (Roberts and Roberts). Lawn care, whether commercial or do-it-yourself, represents a large industry. In 1986, the lawn care industry in the United States was responsible for more than one and one-half billion dollars in business volume (Daniel and Freeborg, 1987). Lawn care sales to do-it-yourself consumers in 1985 totalled more than six hundred and fifty million dollars (Watson et. al., 1992). It is estimated that there are more than fifty six million Americans involved with caring for their own lawns (National Gardening Association 1987-88).

It is assumed that consumers demand lawns completely free of weeds, insects and diseases. A considerable portion of the service the lawn care industry provides involves fertilizing, and applying herbicides and insecticides to residential and commercial lawns (Watson et. al., 1992). Fertilizer and pesticide applications most often occur at scheduled intervals primarily for business, rather than agronomic reasons. A predetermined schedule

⁵Fertility refers to the total amount of nitrogen in pounds per 1000 square feet applied annually.

¹All values represent the mean of 3 replications. Means in the same column with the same letter are not significantly different at the 0.05 level as determined by Fisher's Protected Least Significant Difference test.

²Percent Poa annua refers to the percent of the plot area covered with annual bluegrass.

³Percent crabgrass refers to the percent of the plot area covered with crabgrass plants..

⁴Percent broadleaf refers to the percent of the plot area covered with broadleaf weeds. In this evaluation the broadleafweed population was made up of primarily white clover.

ns No significant difference was found among the means in this group of data.

allows the most efficient access to the greatest number of lawns. In addition to using a predetermined schedule, lawn care companies apply pesticides to entire turf areas, regardless of pest presence or absence, because this method requires less employee training and time.

Pesticide applications to home lawns are also made by home owners. Like lawn care companies, home owners often apply pesticides at scheduled calendar intervals to entire lawns rather than on an as needed basis. Extension service representatives and fertilizer and pesticide manufacturers frequently encourage this type of pesticide application program since it aids untrained individuals in managing a completely pest free lawn.

Both home owners and lawn care companies often apply pesticides when no pests are present. In 1989, the United States Environmental Protection Agency (EPA) estimated that there were about six million pounds of diazinon applied to home and commercial turf (USGAO, 1990). In addition, the EPA also estimated that nearly four million pounds of 2,4-D were applied annually to residential turf (USGAO, 1990). It is possible, that if pesticides were applied only when pests are present, that these numbers could be significantly reduced.

An alternative to the application of lawn care products on a predetermined schedule is to apply many of these same products on an "as needed" basis. Using an Integrated Pest Management (IPM) program on residential lawns is one method that should be explored. The overall goal of an IPM program is to produce the healthiest lawn possible by combining all available turf and pest management alternatives (Voigt and Fermanian, 1991). In this plan, pest tolerance levels are established, lawns are regularly monitored (scouted) for the presence of pests, an appropriate maintenance program is implemented, and controls (cultural, biological, or chemical) are used when necessary (Daar, 1986).

There has been little research comparing consumer preferences for lawns maintained with standard practices compared to an IPM approach. There are trade-offs associated with each approach. IPM methods can use less pesticides (measured in pounds per year) when compared with lawn care practices that apply pesticides at regularly scheduled intervals regardless of need (Short et. al., 1982). However, lawns managed using IPM methods may contain a few weeds, insects or diseases.

Is turf quality reduced using IPM programs? Will home owners accept reduced turf quality if they know that less pesticides are used? How do consumers respond to these potential trade-offs? Do turf-care specialists' perceptions of turf quality differ from home owners' preferences? This study will investigate these questions by conducting a two- to three-year study at the Horticulture Research Field Laboratory in Urbana, Illinois. Two hundred forty local home owners without particular expertise in turfgrass and turf-care specialists will participate in this study.

Five management treatments are included in this study: 1) a management program as practiced by lawn care companies (PLC); 2) a management program where no fertilizer or pesticides are applied (Untreated); 3) a management program using only organic fertilizers (Organic); and 4) two management programs using IPM programs (IPM 1 and IPM 2). See the boxed information for details on each treatment.

The objectives of this study are to:

A. determine the performance levels of each management regime by rating weed, insect, and disease levels and measuring quantities of applied

Research Protocol:	An Evaluation of Turf Quality and Home Owner Satisfaction Resulting From Five Turf Management Programs
Location:	Ornamental Horticulture Research Center, Urbana, IL
Seeding/ Establishment:	establishment date - September 1992; turf - mature Kentucky bluegrass blend ; plot size - 9 ft x 11 ft;
Professional Lawn Care Treatment:	fertilizer - Lebanon 18-5-9 @ 4 lbs N/M/yr, (0.75 lb N/M in Apr. & early July, 0.5 lb N/M in May, 1.0 lb N/M in Sept. & Nov.; herbicides - preemergence control in April, postemergence broadleaf weed control in May; insecticides - grub control in August.
Organic Treatment:	fertilizer - milorganite @ 4 lbs N/M/yr (1 lb N/M in early May, mid to late June, early Sept., and mid Nov.); herbicides & insecticides - none are used.
IPM 1 Treatment:	fertilizer - Lebanon 18-5-9 @ 4 lbs N/Wyr, (1.0 lb N/M in May, June, Sept., & Nov.); herbicides - when present all weeds controlled with postemergence herbicides; insecticides - grub control @ 4-6 grubs/sq ft, webworm control @ 2 worms/sq ft.
IPM 2 Treatment:	fertilizer - Lebanon 18-5-9 @ 4 lbs N/M/yr, (1.0 lb N/M in May, June, Sept., & Nov.); herbicides - controlled with postemergence herbicides when weeds are present @ 100 sq in of weeds/sq yd turf; insecticides - grub control @ 8-12 grubs/sq ft, webworm control @ 2 worms/sq ft.
Untreated:	no fertilization, weed or insect pest control.
Management:	mowing - all treatments mowed with mulching mower; irrigation - as needed to prevent stress.
Experimental Design:	RCB; 3 replications.

pesticides;

B. determine preference for turf associated with each treatment, by three distinct groups; and

C. determine the influence of receiving management information on turf quality evaluations.

Evaluations were made by three groups: 1) turf-care specialists; 2) local home owners who are unaware of the treatments; and 3) local home owners who have knowledge of each plot treatment.

During 1994 the plots evaluated by turf were specialists on one occasion, homeowners on 2 occasions and throughout the growing season by one turf researcher from the University of Illinois. Only the researcher's evaluations are presented here (Table 3). At the time of evaluation by the groups, the PLC plots had received preemergence crabgrass control herbicide 2 times, postemergence broadleaf control herbicide 4 times, and insecticide 3 times during the course of the study. The IPM1 plots had received postemergence broadleaf control herbicide 4 times, and no crabgrass control OL insecticide. IPM2 plots were times with treated 2 postemergence broadleaf

control herbicide and received no crabgrass herbicide or insecticide. Turf quality appeared to be most effected by fertilizer source and applications. No significant difference was observed between the PLC treatment and the IPM 1 treatment on any of the evaluation dates (Table 3). April through June no significant differences were observed between the IPM 2

program and IPM 1 or PLC program. Lower quality of the IPM 2 plots July through October was a result of increasing weed populations. The organic program produced turf quality rated only as fair. This is probably due to the slower nitrogen release properties of the organic fertilizer. Turf density in these plots was poor and weed populations were able to grow.

Management	Quality ²					
Program	4/18	5/23	6/29	7/17	8/05	9/27
PLC	7.3c	7.3c	4.3a	5.3b	5.0c	6.3bc
Organic	6.0b	5.3b	3.0a	5.0b	3.7ab	2.7a
IPM 1	7.3c	7.7c	3.7a	7.3c	6.3d	7.3c
IPM 2	7.0c	6.0b	4.0a	6.7c	4.3bc	5.7b
untreated	4.0a	3.3a	3.7a	3.0a	2.7a	1.7a

Table 3. The evaluation of 5 home lawn management programs during 1994.1

¹All values represent the mean of 3 replications. Means in the same column with the same letter are not significantly different at the 0.05 level as determined by Fisher's Protected Least Significant Difference test.

²Quality evaluations are made on a 1-9 scale where 9 = excellent turfgrass quality and 1 = very poor turfgrass quality.

Turfgrass Evaluations at the Chicago Botanic Garden

Ken Bilow,	Tom	Voigt,	and	Richard	Hawke
------------	-----	--------	-----	---------	-------

Research Protocol:	Turfgrass Evaluations at the Chicago Botanic Garden
	and go bottine duruen
Location:	Chicago Botanic Garden,
	Glencoe, IL
Seeding/	site preparation - spring/summer 1992;
Establishment:	seeding rate - Poa supina, 1 lb/M; sheep
	fescue, 3.5 lbs/M; Silvania hard fescue, 3.5
	lbs/M; Ful't's weeping alkaligrass, 2.5 lbs/M;
	tall fescue, 6 lbs/M; Kentucky bluegrass, 3.5
	lbs/M buffalograss, plugsl
	irrigation - none.
Plot	mowing height - tall fescue and Kentucky
Maintenance:	bluegrass, 3 inches.
Fertilizer	Milorganite (5-2-0)
Source:	Once (33-1-10)
	Ringers (9-2-4)
Level and a state	Scott's Lawn Reviver (9-2-4)
	Scott's Turf Builder (34-4-8)
	rate - all applied at 4 lbs N/Wyr.
Experimental	RCB;
Design:	3 replications.

Many professional turfgrass managers believe that labor and pesticide inputs are reduced when the proper turfgrass for a given use, environmental setting, and cultural regime is planted. This stands to reason; a turf that is well-adapted to its surroundings will suffer fewer stresses and be better able to tolerate occasional problems than a turf that is poorly adapted to a growing situation having reduced tolerances to problems.

This research was initiated by the Chicago Botanic Garden and the University of Illinois Department of Horticulture to evaluate turfgrasses specifically for the North Shore and North Suburban areas of Chicagoland. The objectives of this work are:

1. To evaluate several alternative turfgrass species (*Poa supina*, sheep fescue, Silvania hard

fescue, Fult's weeping alkaligrass, and buffalograss) when maintained with different nitrogen sources; and

2. To evaluate ten tall fescue and ten Kentucky bluegrass cultivars for performance in the North Shore area when maintained with different nitrogen sources.

The ten tall fescue cultivars studied were:

Avanti Bonzai Crewcut Crossfire Monarch Rebel Jr. Shortstop Silverado Trailblazer II Twilight The ten Kentucky bluegrass cultivars studied were:

Alene	Midnight
Argyle	Parade
Asset	Park
BA73-366	S-22
Kenblue	Washington

These studies were evaluated in 1993 and 1994, and will conclude in 1995. The following observations were made during the 1994 growing season.

Tall fescue cultivars. The appearance of these cultivars seems superior to older tall fescue cultivars. First, there appears to be little color differences among these tall fescues with the overall color being very acceptable. 'Twilight' appears to be the darkest green. 'Bonsai' and 'Rebel Jr.' also display excellent color. Second, the leaf texture of these tall fescues is more coarse than Kentucky bluegrass. 'Bonsai' and 'Rebel Jr. ' appear, however, to have the finest leaf texture in this study. All of these cultivars appear to have a finer texture than Ky. 31. Finally, all the cultivars have produced a dense turf capable of out-competing weeds.

All cultivars survived the record cold temperatures with snow cover during the winter of 1993-94.

Kentucky bluegrass cultivars. The aesthetic attributes of the Kentucky bluegrasses were also considered. 'Washington' appeared to have the earliest spring greenup, while 'Park' and 'BA73-366' appeared to have the slowest spring greenup. Color during the growing season was also a consideration. The darkest green cultivar in the trial was 'Midnight'. 'Washington also produced a dark green turf. 'Kenblue' appeared to be the lightest green. Finally, 'Washington' appeared to have the highest density, and 'Park' and 'Kenblue' had appeared to b the least dense types. As the growing season progressed, 'Midnight' appeared to thin.

Poa supina. Initially, *Poa supina* grew aggressively and formed a dense turf. However, the color (a light yellow-green) and excessive thatch development are disadvantages to its use. In addition, turf thinning caused by sod webworm during 1994 was a problem that was followed by weed invasion.

Sheep and hard fescues. Both the sheep and hard fescues produced relatively weed-free turf of acceptable density and good color.

Alkaligrass. The alkaligrass had poor density, and it was difficult at times to find any present in the plots. There is speculation that for alkaligrass to thrive, there needs to be high concentrations of salt in the soil. The lack of density may, at least in part, be explained by the lack of salt present in the Garden's soils. The poor density allowed weed and grass invasion. The color of alkaligrass was a milky-green.

Buffalograss. The buffalograss had low density, slow spring greenup, and was heavily invaded by weeds. Its color was acceptable when actively growing. During flowering, the male inflorescences seen above the turf's canopy provided visual interest.

This trial is scheduled to continue one more growing season. In the 1995 Illinois Turfgrass Research Report, data from all three years of the study and recommendations for the North Shore will be presented.

Observations of Low-Maintenance Grasses and Legumes Used for Erosion Control in a Woody Plant Nursery

Tom Voigt and Connor Shaw

In Illinois, nursery crops are commonly grown using a clean cultivated tillage system. Many nurserymen produce landscape plants in a clean cultivation system due to the perception of higher quality and customer preference. Clean tillage, however, can lead to soil erosion; the annual average loss of soildue to erosion in Illinois is 6.7 tons per acre (Neely and Heister, 1987). This is approximately 2.5 to 6 times greater than the natural soil erosion rate, an increase that can be attributed to human activities (Neely and Heister, 1987).

Research Protocol:	Observations of Low-Maintenance Grasses and Legumes Used for Erosion Control in a Woody Plant Nursery
Location:	Possibility Place Nursery, Monee, IL
Site/ Establishment:	soil types - Frankfort silty clay loam (poor soil), Brice silty clay loam (good soil); plot placement - between rows of nursery stock; plot size - 5ft x 6 ft.
1990 Planting Species/Rates:	buffalograss - 55 lbs PLS/A, Scaldis hard fescue - 176 lbs/A, sheep fescue - 176 lbs/A, redtop - 44 lbs/A, colonial bent - 44 lbs/A.
1992 Planting Species/Rates:	redtop + timothy+Dutch white clover - 5+5+2 lbs/A, Dutch white clover+birds foot trefoil - 5 + 5 lbs/A, Dutch white clover - 5 lbs/A
Experimental Design:	RCB; 3 replications.

Although the majority of this loss is not associated with woody plant nurseries. any reduction in erosion, even a small quantity, is important. In addition to erosion, clean cultivated crop production requires the extensive use of herbicides and/or cross clean cultivation. Many of the herbicides used in nursery crop and landscape maintenance plantings have a tendency to run-off the application site via surface water.

One method of controlling erosion and surface runoff in cropping systems that use clean cultivation is with a cover of vegetation (Illinois Agronomy Handbook, 1984). Using lowlow-maintenance cost. ground cover plantings between crop rows in nurseries is a conservation practice that also provides several other benefits to growers. Ground covers can improve soil tilth, moderate soil temperatures, and

can dry wet soils when ground covers with high water demands are planted (Childers, 1978).

There are a number of demands placed on an appropriate ground cover crop. Kuhns (1989) indicates that crops should establish rapidly, be dense enough to discourage weed competition, have a slow vertical growth and spread, tolerate poor soils, require lowto-moderate fertility, tolerate traffic, and not interfere or limit the growth of crops. Added to these characteristics is a desire for a cover crop to be low and/or slow growing to reduce the need for mowing.

This demonstration was installed at Possibility Place Nursery in Monee, Illinois, to evaluate several grasses and legumes as potential erosion and runoff controls. Since its origination, Possibility Place Nursery has practiced sound soil management by using contour plantings when possible and by planting grasses between the rows of nursery crops to serve as erosion and runoff controls. Another unusual feature of this nursery is the plant material grown here. Possibility Place grows native woody plants. Most of these are propagated by locally collected seed, in fiber bags buried in the soil and watered and fertilized using drip irrigation. This bag culture speeds harvest and the drip irrigation supplies necessary water and minerals for growing plants. Grasses used for erosion control included Kentucky bluegrass and perennial ryegrass which required frequent mowing to stay at a desire height and were often invaded by perennial weeds.

This demonstration was initiated to evaluate several different grasses and legumes with several objectives in mind:

- the plants had to germinate quickly and cover the ground to control erosion;
- the plants should have slow vertical extension rate to limit mowing;
- the seeded grasses and/or legumes should be inexpensive to purchase;
- the seeded grasses and/or legumes should be competitive enough to restrict weed invasion;
- these plants should be controllable with commonly used nursery herbicides; and
- the plants should be aesthetically pleasing to nursery visitors.

The plots were established in the fall of 1990 and 1992 on 2 different type soils, a Frankfort silty clay loam (poor soil) and a Brice silty clay loam (good soil). All plant species were established at both sites.

The plots were evaluted in 1994. Compared with previously used vegetation, plants in this study had a slower growth rate so mowing frequency was reduced. All plantings, other than buffalograss, germinated and covered the ground quickly enough to serve as erosion controls. The combination planting of redtop, timothy, and Dutch white clover proved to be the best overall planting due to low initial cost, erosion control, and appearance. Because soil moisture was high near the fiber bags, all plants tended to invade into woody plant rows. Sheep fescue produced a high quality, attractive ground cover, but the seed was expensive. It tended to invade the woody plant planting bags, and was difficult to control with commonly used nursery herbicides. There appeared to be no discernible loss of above ground growth of the any landscape plants due to the different ground coverings. With the exception of buffalograss, all species and combinations reduced weed invasion when compared with previously used ground covers.

Literature Cited

Childers, Norman F. 1978. Modern Fruit Science. Horticultural Publications. New Brunswick, New Jersey.

Kuhns, Larry J. 1989. Permanent Cover Crops for Horticultural Plantings. Informational Sheet. The Pennsylvania State University.

Neely, R. Dan and Carla G. Heister, Compilers. 1987. The Natural Resources of Illinois. Illinois Natural History, Survey. Special Publication 6. Champaign, Illinois.

Various Authors. 1984. Illinois Agronomy Handbook. Circular 1233. University of Illinois. Urbana, Illinois.

50

ANNUAL AND PERENNIAL GRASS CONTROL RESEARCH AT THE UNIVERSITY OF ILLINOIS

Crabgrass (*Digitaria* spp.) is a common weed and continual problem in Illinois turf. It germinates in late spring and throughout summer on sunny, moist sites. Once established, crabgrass, often crowds out desirable turf. This is especially a problem in newly seeded turf or areas where the turf is weakened by stress or poor maintenance. Preemergence or postemergence herbicides are available to control crabgrass.

Research Protocol:	Preemergence Crabgrass Control Evaluation
Location:	Ornamental Horticulture Research Center, Urbana, IL
Turf:	Kentucky bluegrass.
Application of Treatments:	 date applied - all treatments on April 22, 1994, except AGR40500 (April 29, 1994); 2nd applications of Team, Pendimethalin and Dimension made on June 17, 1994; liquid herbicides - applied with a CO₂ backpack sprayer; spray volume - 40 gpa; granular herbicides - broadcast by hand.
Turf Maintenance:	mowing height - 1 ⁷ / ₈ inches; pesticides - Trimec on April 27 and May 10 for postemergence broadleaf weed control; irrigation - as needed to encourage crabgrass growth; fertilization - none.
Experimental Design:	RCB; 3 replications.

Preemergence Crabgrass Control J.E. Haley, T.W. Fermanian, and D.J. Wehner

Most turfgrass managers prefer to control crabgrass with preemergence herbicides. These herbicides are applied prior to weed germination in the spring. In central Illinois germination begins mid-April to mid-May. To insure season long control a second application of preemergence herbicide is often needed. There are a number of preemergence herbicides for control of crabgrass on the market today. Periodically, new herbicides or new turf formulations of herbicides are developed. These herbicides need to be evaluated for efficacy and compared to the existing materials. The purpose of this research was to evaluate Team 2G (benefin + trifluralin. DowElanco) and Team 1.15%

on fertilizer, Barricade 65WG (prodiamine, Sandoz Crop Protection) and prodiamine 0.22% with fertilizer; and PreM 60DG (pendimethalin, LESCO Inc.) and pendimethalin 1.21% with fertilizer. Also included in this evaluation were Dimension 1EC (dithiopyr, Monsanto Agriculture, Inc.); AGR40500 (undisclosed, AgrEvo); and Ronstar 2G (oxadiazon, Rhone-Poulenc). Table 1 contains herbicide rates. Each replication included an untreated plot.

The site used for the 1994 evaluation had many broadleaf weeds and bare spots. The previous year's crabgrass population was extremely high so large amounts of crabgrass seed was present. Average crabgrass cover in the untreated plots was 68.3% 89 days after treatment (DAT) and 86.7% 115 DAT. In general, the best crabgrass control was observed with Team, prodiamine and pendimethalin combined with fertilizer (Table 1). This reinforces the importance of fertilization in a comprehensive weed control program. No turf injury was observed with any of these treatments.

		% Crabgra	ss Control ²
Herbicide	<u>Rate</u> Ibs ai/A	<u>7/20</u> 89 DAT	<u>8/15</u> 115 DAT
Team 1.15% with fertilizer	1.5/1.5	65.8bc	53.9a-f
Team 1.15% with fertilizer	2.0	80.5b-d	71.2e-g
Team 1.15% with fertilizer	3.0	88.8cd	78.9fg
Team 2G	3.0	78.0b-d	67.3e-g
prodiamine 0.22% with fertilizer	0.5	78.0b-d	57.7b-g
prodiamine 0.22% with fertilizer	0.75	82.9cd	67.3e-g
prodiamine 0.22% with fertilizer	1.0	93.7d	92.3g
Barricade 65WG	0.32	75.6b-d	48.1a-f
Barricade 65WG	0.5	73.2b-d	55.8a-f
Barricade 65WG	0.65	73.2b-d	57.7b-g
Barricade 65WG	0.75	87.3cd	65.4e-g
pendimethalin 1.21% with fertilizer	1.5/1.5	68.3bc	63.5d-g
pendimethalin 1.21% with fertilizer	1.5	56.1ab	42.3a-e
pendimethalin 1.21% with fertilizer	3.0	90.2cd	75.0e-g
Lesco PreM 60WP	3.0	78.0b-d	28.9a-d
Dimension 1EC	0.38	68.3bc	42.3a-e
Dimension 1EC	0.5	78.0b-d	67.3e-g
Dimension 1EC	0.25/0.125	73.2b-d	51.9a-f
Dimension 0.086% with fertilizer	0.19	78.0b-d	61.6c-g
AGR40500	1.5	34.9a	25.0ab
AGR40500	2.0	56.1ab	21.2a
Ronstar 2G	3.0	56.1ab	27.0a-c

Table 1. The evaluation of herbicides applied 22 April 1994 for preemergence control of crabgrass in a Kentucky bluegrass turf.¹

¹ All values represent the mean of 3 replications. Means in the same column with the same letter are not significantly different at the 0.05 level as determined by Fisher's Protected Least Significant Difference test.

² Percent crabgrass control is determined by making a visual estimate of crabgrass cover in each treated plot and comparing this with the visual estimate found in the untreated plot. Crabgrass cover in the untreated plot averaged 18.3% on 7/21, 21.7% on 8/10 and 58.3% on 9/01.

Postemergence Crabgrass Control

	J.E.	Haley,	D.J.	Wehner,	and	T.W.	Fermanian	
--	------	--------	------	---------	-----	------	-----------	--

Research Protocol:	Postemergence Crabgrass Control Evaluation
Location:	Ornamental Horticulture Research Center, Urbana, IL; early trial - heavy day soil; late trial - silt loam soil.
Turf:	Kentucky bluegrass.
Application of Treatments:	date applied - July 1, 1994, treatments applied at the 1-3 leaf stage of weed growth, July 8, 1994, all treatments applied at the 1-2 tiller stage of weed growth and the 3-5 tiller stage of growth; liquid herbicides - applied with a CO ₂ backpack sprayer; spray volume - 40 gpa.
Plot Maintenance:	mowing height - 1.5 inches; pesticides - no additional pesticides; irrigation - as needed to stimulate crabgrass growth; fertilization - none.
Experimental Design:	RCB; 3 replications.

Postemergence crabgrass control herbicides are needed if preemergence herbicides are not applied, fail to control crabgrass throughout the season, or are applied after some weed germination has occurred. In the past, organic arsenicals were the primary used for herbicides postemergence crabgrass control. More recently, fenoxaprop (Acclaim, AgrEvo) is used on fine quality turf postemergence crabgrass control. Acclaim is generally thought to be less phytotoxic and more efficacious with a single application than the organic arsenicals. The purpose of this trial was to evaluate early, mid and late applications of HOE-360 EW (fenoxaprop, AgrEvo) applied alone and with PreM (pendimethalin, LESCO, Inc.)

and early applications of AGR 40500 (undisclosed, AgrEvo). Also evaluated were early treatments of Dimension 1EC and granular with fertilizer (dithiopyr, Monsanto) and early, mid and late treatments of Acclaim, (fenoxaprop, AgrEvo). A single PreM treatment was included for comparison with early postemergence applications. Tables 2, 3 and 4 list herbicide rates and formulations. Herbicide applications were made at 3 stages of crabgrass growth. Early postemergence applications (1-3 leaf stage of crabgrass growth) were made to an improved Kentucky bluegrass turf grown on heavy clay soil. Mid and late applications (1-2 tiller and 3-5 tiller stage of growth respectively) were made to a Kentucky bluegrass turf grown on silt loam soil.

Early postemergence crabgrass control. All treatments controlled crabgrass when compared to the untreated plot. Twenty-one days after treatment most postemergence herbicides provided excellent control (Table 2). At 36 DAT control was still good to excellent. Dimension with fertilizer provided better control at 36 DAT than at 21 DAT. LESCO PreM provided about 33% crabgrass control indicating that some crabgrass germinated following treatment application. Crabgrass populations in the untreated plots 21

and 36 DAT respectively were rep 1, 10 and 10%; rep 2, 12 and 15%; and rep 3, 12 and 20%.

Mid postemergence crabgrass control. All treatments controlled crabgrass when compared to the untreated plot. No significant difference in control was observed among treatments at 14 or 28 DAT (Table 3). Crabgrass populations in the untreated plots 14 and 28 DAT respectively were rep 1, 20 and 35%; rep 2, 20 and 25%; and rep 3, 20 and 20%.

Brotten		% Crabgrass Control ²	
Herbicides	Rate lb ai/A	<u>7/22</u> 21 DAT	<u>8/05</u> 36 DAT
Acclaim 1EC	0.08	91.2bc	95.6bc
Acclaim 1EC	0.12	97.1bc	97.8bc
AGR40500	1.5	100.0c	97.8bc
AGR40500	2.0	100.0c	97.8bc
AGR40500	3.0	100.0c	93.3bc
AGR40500	4.0	100.0c	100.0c
Dimension 1EC	0.5	94.1bc	77.8b
Dimension with fertilizer	0.25	82.3b	95.6bc
HOE 360EW +PreM	0.04 + 2.0	97.1bc	95.6bc
HOE 360EW	0.04	97.1bc	86.7bc
HOE 360EW	0.06	97.1bc	100.0c
Lesco PreM	1.5	32.2a	33.3a

Table 2. The evaluation of herbicides for postemergence control of crabgrass applied on 1 July at the 1 - 3 leaf stage of crabgrass growth.¹

 Table 3. The evaluation of herbicides for postemergence control of crabgrass applied on 8 July at the 1 - 2 tiller stage of crabgrass growth.¹

		% Crabgrass Control ²	
Herbicides	<u>Rate</u> lb ai/A	<u>7/22^{ns}</u> 14 DAT	<u>8/05^{ns}</u> 28 DAT
Acclaim 1EC	0.18	88.3	97.5
HOE 360 EW	0.06	83.3	96.3
HOE 360 EW	0.09	85.0	96.3
HOE 360 EW	0.125	96.7	98.8

¹ All values represent the mean of 3 replications. Means in the same column with the same letter are not significantly different at the 0.05 level as determined by Fisher's Protected Least Significant Difference test.

² Percent crabgrass control is determined by making a visual estimate of crabgrass cover in each treated plot and comparing this with the visual estimate found in the untreated plot. Crabgrass cover in the untreated plot averaged 13.3% on 7/12, 26.7% on 7/23, 36.7% on 8/09, and 75.0% on 8/25.

^{ns} No significant difference was found among the means in this group of data.

Late postemergence crabgrass control. All treatments controlled crabgrass when compared to the untreated plot. No significant difference in control was observed among treatments at 14 or 28 DAT (Table 4). Crabgrass populations in the untreated plots 14 and 28 DAT respectively were rep 1, 95 and 95%; rep 2, 85 and 95%; and rep 3, 85 and 95%. Both mid and late postemergence trials had such a high infestation of crabgrass that it was impossible to determine if turf injury occurred.

		% Crabgrass Control ²	
Herbicides	<u>Rate</u> Ib ai/A	7/22 ^{ns} 14 DAT	<u>8/05^{ns}</u> 28 DAT
Acclaim 1EC	0.25	99.2	97.5
HOE 360 EW	0.09	94.7	95.8
HOE 360 EW	0.125	99.6	98.9
HOE 360 EW	0.18	99.6	99.3

Table 4.	The evaluation of herbicides for postemergence control of
	crabgrass applied on 8 July at the 3 - 5 tiller stage of crabgrass growth. ¹

¹ All values represent the mean of 3 replications. Means in the same column with the same letter are not significantly different at the 0.05 level as determined by Fisher's Protected Least Significant Difference test.

² Percent crabgrass control is determined by making a visual estimate of crabgrass cover in each treated plot and comparing this with the visual estimate found in the untreated plot. Crabgrass cover in the untreated plot averaged 13.3% on 7/12, 26.7% on 7/23, 36.7% on 8/09, and 75.0% on 8/25.

^{ns} No significant difference was found among the means in this group of data.

BROADLEAF WEED CONTROL RESEARCH AT THE UNIVERSITY OF ILLINOIS

Broadleaf weeds compete with turfgrass for water, light, space and nutrients. They reduce the aesthetic quality of the turf and are often symptomatic of an underlying problem (soil compaction, poor nutrition etc.).

Preemergence Broadleaf Weed Control

J.E. Haley and D.J. Wehner

Research Protocol:	Preemergence Broadleaf Weed Control
	and the second second second second second
Location:	Omamental Horticulture Research Center, Urbana, IL
Turf:	Kentucky bluegrass.
Application of	date applied - April 4,1994; postemergence
Treatments:	treatment applied May 20, 1994;
S. S. Samare	liquid herbicides - applied with a CO2
	backpack sprayer,
	spray volume - 40 gpa.
Plot	mowing height - 2.5 inches;
Maintenance:	pesticides - no additional herbicides were applied;
	irrigation - irrigated only during severe
	moisture stress and dormancy;
	fertilization - none.
Experimental	RCB;
Design:	3 replications.

Traditionally,

postemergence herbicides are used to control broadleaf weeds in turf. Some herbicides that prevent crabgrass germination also prevent select will broadleaf weeds such as yellow wood sorrel (Oxalis stricta), prostrate spurge (Euphorbia humistrata), and chickweed (Cerastium vulgate and Stellar media). However, with the development of preemergence herbicides that control a wider spectrum of weeds, many turf managers have, in recent years, turned to preemergence herbicides for broadleaf weed control. Gallery (isoxaben. DowElanco) is labeled to control over 40 broadleaf weed and annual grass species with preemergence applications to and warm cool season turfgrass. In this evaluation, two formulations of Gallery are examined, a dry flowable and a

granular mixed with fertilizer. The dry flowable formulation is applied alone and in a tank mix with the postemergence broadleaf herbicide Confront (triclopry and clopyralid, DowElanco).

The most common weeds found on the test sites were dandelion (*Taraxacum officinale*) and white clover (*Trifolium repens*). Existing weeds were not killed prior to herbicide treatment. Because weeds were already present, applications of Gallery alone did not provide good weed control (Table 1). Gallery does not offer any postemergence control of broadleaf weeds. In most cases, April applications of Gallery and Confront combined provided the same control as May applications of Confront alone. The exception to this was dandelion control 109 days following Gallery plus Confront application and 63 days following a single Confront application.

		% Control ²				
	Rate	Dandelion		Clover		
Herbicide	lbs ai/A	67 DAT	109 DAT	67 DAT ^{ns}	109 DAT	
Gallery on fertilizer 0.38G	0.75	22.2a	23.1a	59.9	61.4a	
Gallery 75DF	0.75	22.2a	25.2a	69.9	68.5a	
Gallery 75DF + Confront 3SL	0.75 + 0.75	70.4b	37.7ab	100.0	90.0b	
Gallery 75DF + Confront 3SL	0.5 + 0.75	63.0ab	47.0b	100.0	100.0b	
Confront 3SL ³	0.75	96.3b	100.0c	100.0	100.0b	

 Table 1. The evaluation of Gallery and Confront applications made to Kentucky bluegrass in the spring of 1994.¹

Postemergence Broadleaf Weed Control

J.E. Haley, D.J. Wehner and T.W. Fermanian

Research	
Protocol:	Postemergence Broadleaf Weed Control
Location:	Ornamental Horticulture Research Center, Urbana, IL
Turf:	Kentucky bluegrass.
Application of	date applied - May 20, 1994;
Treatments:	liquid herbicides - applied with a CO 2backpack
	spray volume - 40 gpa;
	granular materials - applied by hand.
Plot	mowing height - 2.5 inches;
Maintenance:	pesticides - no additional pesticides;
	irrigation - irrigated only during severe moisture stress
	and dormancy;
	fertilization - none.
Experimental	RCB;
Design:	3 replications.

Many of the available postemergence herbicides will kill a variety of broadleaf weeds. These herbicides are often a combination of several active ingredients and are found in a variety of formulations. The trend in postemergence broadleaf herbicides has been toward development of safer formulations. Many of these are granular formulations in combination with fertilizers. The purpose of this research was to evaluate several postemergence broadleaf weed control herbicides.

¹All values represent the mean of 3 replications. Means in the same column with the same letter are not significantly different at the 0.05 level as determined by Fisher's Protected Least Significant Difference test. ²Percent control is determined by making a visual estimate of weed cover in each treated plot and comparing this with the visual estimate found in the untreated plot. Crabgrass cover in the untreated plot averaged 16.7%, clover cover in the untreated plot averaged 41.7% and dandelion cover in the untreated plot averaged 16.7%. ^{ns} No significant difference was found among the means in this group of data at the 0.05 level as determined by

Fisher's Protected Least Significant Difference test.

³ Confront application was made May 20, 1994.

Herbicides included in this evaluation were Confront, liquid formulation and a granular formulation combined with fertilizer (triclopry and clopyralid, DowElanco), Turflon Ester 4EC (tricloypry, DowElanco), plus 2,4-D and Trimec Classic (2,4-D, MCPP and dicamba, P.B.I. Gordon)).

Broadleaf weeds found at the site included dandelion (*Taraxacum officinale*) and white clover (*Trifolium repens*). White clover control was good to excellent on all evaluation dates (Table 2). Turf injury was observed 13 days after treatment. Although not statistically significant, some herbicides appeared to temporarily cause a slight yellowing of the turf (Table 2). Dandelion control was good to excellent with all herbicides 13 and 47 days after application (Table 3). The lower rate of Confront did not control dandelions as well as the other herbicides and rates at 74 days after treatment.

		C	Turf Injury ^{3ns}		
Herbicide	<u>Rate</u> lb ai/A	<u>6/02</u> 13 DAT	<u>7/06</u> 47 DAT	<u>8/09</u> 74 DAT	<u>6/02</u> 13 DAT
Confront 3SL	0.38	3.0ab	1.0a	1.0a	7.3
Confront 3SL	0.75	2.7ab	1.0a	1.0a	9.0
Confront on fertilizer .47G	175 lb cf/A	3.3ab	1.0a	1.0a	9.0
Trimec Classic	3 pt cf/A	3.7ab	1.3a	1.7ab	7.0
Turflon Ester + 2,4-D 4EC	$1.\hat{0} + 1.0$	2.3a	1.0a	1.0a	8.0
Turflon Ester 4EC	1.0	4.0b	1.0a	1.3ab	7.3
untreated	-	9.0c	9.0b	9.0c	9.0

Table	2.	The evaluation of herbicides applied May 20 for postemergence control of	
		white clover. ¹	

Table 3. The evaluation of herbicides applied May 20 for postemergence control of dandelion.¹

			Dandelion ²	
Herbicide	<u>Rate</u> lb ai/A	<u>6/02</u> 13 DAT	<u>7/06</u> 47 DAT	<u>8/09</u> 74 DAT
Confront 3SL	0.38	2.7a	2.7b	4.0b
Confront 3SL	0.75	3.0a	1.0a	1.3a
Confront on fertilizer .47G	175 lb cf/A	3.0a	2.0ab	2.0a
Trimec Classic	3 pt cf/A	3.0a	1.3a	1.0a
Turflon Ester + 2,4-D 4EC	1.0 + 1.0	2.7a	1.0a	1.3a
Turflon Ester 4EC	1.0	3.0a	2.0ab	2.0a
untreated	-	9.0b	9.0c	9.0c

¹All values represent the mean of 3 replications. Means in the same column with the same letter are not significantly different at the 0.05 level as determined by Fisher's Protected Least Significant Difference test.

³ Turf injury is evaluated on a scale of 1-9, where 9 = no visible injury and 1 = necrotic turf.

ns No significant difference was found among the means in this group of data.

²All weed control evaluations are made on a scale of 1-9, where 9 = no control of the weed species indicated and 1 = no weeds present. A rating of 5 would indicate some injury to the weed or total control of some of the weeds but little control of others.

TURFGRASS NUTRIENT RESEARCH AT THE UNIVERSITY OF ILLINOIS

Nitrogen Utilization in Creeping Bentgrass

Y. Kuo, D.J. Wehner and T.W. Fermanian

Efficient approaches for screening nitrogen utilization efficiency (NUE) of turfgrasses are needed. Too much N can cause poor root and shoot growth, higher disease incidence such as smut and pythium, reduced carbohydrate reserves, result in poor tolerance to environmental stress, ground water pollution, etc. Nitrogen utilization efficiency defined as the amount dry matter produced per quantity of N in the plant. Nitrogen utilization efficiency evaluation usually starts by decreasing effectiveness of N fertilizer (low N) to stimulate greater utilization.

In this study, the NUE of fourteen cultivars of bentgrass were compared in an hydroponic solution culture. There were significant differences among cultivars in root, shoot, whole plant dry weight and NUE (Table 1). Differences in NUE among most cultivars were correlated to plant dry weight (Fig. 1). Non-creeping type cultivars have lower total dry weight and NUE than creeping type cultivars. On a whole plant dry weight basis, 'Regent' had the highest NUE while 'Allure' had the lowest NUE.

Four cultivars of creeping bentgrass selected from previous screening were grown under low (3 ppm) and high (50 ppm) levels of N in a flowing solution cultural systems. In general, nitrogen utilization efficiency decreased with increasing N levels (Table 2).

The high NUE cultivars grew well under the condition of nitrogen deficiency. Golf course managers may provide too much N for these cultivars. Solution systems can be used for an effective means of screening the NUE of creeping bentgrass cultivars. Further proof under field conditions is necessary.

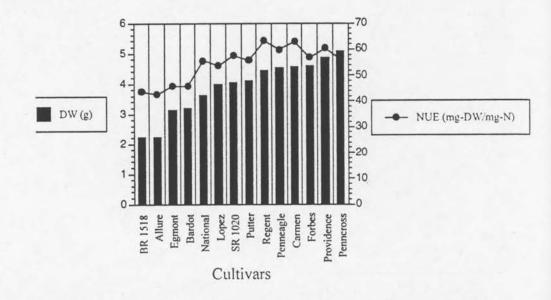


Figure 1. The relationship between whole plant dry weight (DW) and nitrogen utilization efficiency (NUE) of bentgrass cultivars grown under low levels of N (3 ppm).

	Whole I	Plant ¹	Ro	ot	Shoot	
Cultivars	DW	NUE	DW	NUE	DW	NUE
BR1518	2.22a	43.74a	0.81ab	69.35b-e	1.34a	35.96a
Allure	2.21a	42.74a	0.73a	57.32a	1.48a	37.98ab
Egmont	3.13b	45.90ab	1.22d	59.74ab	1.91b	40.31ab
Bardot	3.20b	45.89ab	1.20d	68.68a-e	2.00b	38.74ab
National	3.62bc	55.60cd	0.83a-c	60.08a-c	2.79c	54.62c-e
Lopez	3.98cd	53.78bc	1.12b-d	73.23de	2.86c	49.21bc
SR1020	4.05с-е	57.54cd	1.03a-d	65.08a-e	3.01cd	55.43с-е
Putter	4.11c-e	55.79cd	0.72a	66.76a-e	3.38d-f	53.79с-е
Regent	4.44def	1.06b-d	70.72b-e	3.37d-f	61.29de	63.30d
Penneagle	4.52de-g	59.89cd	1.04a-d	71.72с-е	3.48e-g	57.21c-e
Carmen	4.56de-g	62.92cd	1.15cd	61.68a-d	3.42e-g	64.05e
Forbes	4.60e-g	56.86cd	1.33d	74.84e	3.27de	51.94cd
Providence	4.88fg	60.49cd	1.15cd	61.86a-d	3.74fg	60.23c-e
Penncross	5.09g	55.99cd	1.31d	67.34а-е	3.78g	53.09c-e

 Table 1. Mean dry weight (DW) and nitrogen utilization efficiency (NUE) of bentgrass cultivars grown under low (3ppm) levels of N.

Table 2. Mean whole plant dry weight (DW) and nitrogen utilization efficiency (NUE) of four creeping bentgrass cultivars grown under low (3 ppm) and high (50 ppm) levels of N.

Whole plant ²			Root ²		Shoot ²		
Cultivars	N level	DW	NUE	DW	NUE	DW	NUE
National	low	3.28a	38.92b	0.89b	48.83b	2.39a	36.40b
SR1020	low	3.51ab	42.56cd	0.90b	49.66b	2.61ab	41.00cd
Penncross	low	4.64a-c	40.12bc	1.41c	49.16b	3.23ab	37.17bc
Putter	low	5.18bc	44.95d	1.17b	54.37b	4.01bc	42.90d
National	high	7.42d	20.57a	0.65ab	29.98a	6.77d	19.99a
SR1020	high	6.34cd	21.18a	0.67ab	34.37a	5.67d	20.26a
Penncross	high	9.67e	20.50a	0.57a	31.60a	8.57e	19.57a
Putter	high	5.81cd	20.56a	0.54a	31.26a	5.24cd	19.82a

¹ Values within a column followed by the same letter are not significantly different at the 5% level by Fisher's protected LSD.

² Values within a column followed by the same letter are not significantly different at the 5% level by Fisher's protected LSD.

TURFGRASS NUTRIENT RESEARCH AT SOUTHERN ILLINOIS UNIVERSITY

Effects of Nutrient Sources, Biostimulants, and Soil Modifiers on Zoysiagrass (Zoysia japonica) Turf Quality

K. L. Diesburg

Research Protocol:	Effects of Nutrient Sources, Biostimulants, and Soil Modifiers on Zoysiagrass Turf Quality
Site:	turf - Korean Common zoysiagrass; soil - Hosmer silt clay loam, 3% slope, nutrient depleted; plot size - 5'x 5'.
Application of Treatments:	date applied - July 11, August 16; liquid materials - CO ₂ backpack sprayer; granular - materials - salt-shaker type; spray volume - 150 gpa; Terra-Sorb - slit-seeder at 0.5 inch.
Turf Maintenance:	mowing height -1.5 inches; pesticides - Barricade preemergent in April, Trimec Plus in July; irrigation - none.
Experimental Design:	RCB; 4 replications.

The turf industry is being pressured by government agencies, as well as consumers to reduce environmental pollutants associated with its activities. To assist in this struggle some manufacturers have introduced products that claim to make better use of resources by controlling nutrient release, improving turfgrass growth, OL improving soil conditions. Included in this evaluation are materials that contain coated fertilizer particles (SCU, ONCE) or large Nmolecules containing

(Ringer, IBDU, Coron, Nitroform, Nutralene). It is hoped that these materials will control nutrient release and allow the turfgrass plant to more efficiently use the available nutrients and prevent fertilizer run-off. Products called biostimulants, mixtures of growth hormones and macro- and micronutrients, are thought to improve turfgrass root growth, crown density, and/or vegetative color with minimal stimulation of leaf elongation. These approaches imply less use of conventional fertilizers resulting in less nitrates and salts released into surface and ground water. The added economic advantage of potentially fewer mowings per season is viewed as meeting the demand and justifying the development of these new products.

The initial purpose for this experiment is to put many of these new products (Table 1) into the same management environment in order to determine their relative effects on turf quality. The long-term goal is to compare changes in soil properties after several years of treatment and correlate the soil data with the turfgrass quality data.

There were no significant differences among the effects of the Agrico Turf treatments, although the numerical ratings of the granular treatments were always greater.

Also, the numerical ratings of the solution treatments with AgroTain were greater than those without AgroTain.

No burning of zoysiagrass foliage by the solution treatments was observed at any time. This does not rule out the possibility of burn on the more tender leaves of coolseason grasses.

Table 1. Treatments applied to mature Ko	rean Common turf 19	94.
Treatment	Supplier	Rate ¹ lb/M
Nutrient		
Nutrient		1.31
Agrico Turf granular		1 N
Agrico Turf solution		1 N
Agrico Turf + Agrotain 1.1% granular		1 N
Agrico Turf + Agrotain 1.1% solution		1 N
Agrico Turf + Agrotain 2.2% granular		1 N
Agrico Turf + Agrotain 2.2% solution		1 N
Urea (46-0-0)		1 N
Sulphur-Coated Urea (SCU 37-0-0)		1 N
Triple-Super-Phosphate (0-46-0)		1 P
Potassium Chloride (0-0-60)	0"	1 K
Sprint (10% iron chelate)	Ciba	0.2 Fe
SCU + Sprint	10.11. 1. 1.	1 N + 0.2 Fe
Esmigran (micro.)(0.02% Fe)	Mallinkrodt	4 mat (0.2 Fe)
SCU + Esmigran	DDI C 1	1 N
Ferromec (15-0-0)(6% Fe)	PBI Gordon	4 mat
(18-4-10)	Lebanon	1 N
(10-2-6) animal by-product	Ringer	1 N
IBDU (20-0-16)	Par-Ex	3 N
Once (24-0-0) resin-coated urea	Grace-Sierra	3 N
(28-0-0) formolene	Coron	1 N
Nitroform (38-0-0) long UF	NorAm	3 N
Nutralene (40-0-0) short UF	NorAm	3 N
Milorganite (6-2-0)	Milwaukee Met.	3 N
(processed sewage sludge)	Sewerage Dist.	
Biostimulant		
Bova Mura (5-0-0) (cow manure base)	PBI Gordon	1 N
Bova Mura (5-0-0) (cow manure base)	PBI Gordon	0.05 N
Sand-Aid sea plant meal	Emerald Isle	10 material
Sand-Aid + Milorganite		10 mat.+3 N
Per4max + Urea	Floratine	0.1875 mat.+1 N
Per4max + Renaissance + Urea	Floratine	0.125+0.09 +1 N
Knife + Per4max + Rennaissance + Urea		0.09+0.13+0.09+1N
Soil Modifier		
Maxiplex (humates) + Urea	Floratine	0.75 mat. + 1 N
Maxiplex	Floratine	0.75 mat.
Terra-Sorb + Milorganite polyacrylamide gel	Indust Srvcs Int.	3 mat. + 3 N

Table 1. Treatments applied to mature Korean Common turf 1994.

¹ All 1 N rates were applied on two different dates one month apart. All 3 N rates were applied once on the date of first treatment.

		urf Quality Rating	
reatment	8/11	9/10	Avg
Applied once at 3 lb N			
litroform	8.8	8.8	8.8
Ince	8.3	8.5	8.4
BDU	8.5	8.0	8.3
Ailorganite	7.5	8.5	8.0
Jutralene	7.5	8.0	7.8
errasorb + Milorganite	6.8	8.0	7.4
	7.8	6.5	7.1
inger	1.0	0.5	7.1
pplied twice at 1 lb N			
CU + Sprint (Fe)	6.5	7.5	7.0
gr/Trf + Agrotain 1.1% granular	5.8	8.0	6.9
gr/Trf granular	5.5	8.3	6.9
gr/Trf + Agrotain 2.2% granular	5.3	8.0	6.6
Jrea	4.8	8.3	6.5
gr/Trf + Agrotain 1.1% solution	5.5	7.3	6.4
ČU	5.3	7.5	6.4
erromec	6.5	5.8	6.1
8-4-10 Lebanon	5.0	7.3	6.1
CU + Esmigran	4.8	7.5	6.1
Agr/Trf + Agrotain 2.2% solution	5.0	7.0	6.0
oron	5.3	6.5	5.9
gr/Trf solution	4.5	7.3	5.9
ova Mura (1 N)	4.5	5.5	5.0
riple-Superphosphate	3.8	4.0	3.9
otassium Chloride	3.3	3.8	3.5
	2.8	4.3	3.5
smigran	3.0	3.0	3.0
print (Fe)	5.0	5.0	5.0
ostimulants			
er4max + Urea	6.0	7.8	6.9
er4max + Renaissance + Urea	5.5	6.5	6.0
axiplex + Urea	4.0	7.8	5.9
nife+Per4max+Renaissance+Urea	4.5	7.0	5.8
Iaxiplex	3.5	5.3	4.4
ova Mura	2.8	3.0	2.9
oil Modifiers			
and-Aid + Milorganite	5.0	7.3	6.1
and-Aid	2.5	4.8	3.6
ontreated Control	3.0	4.3	3.6
.SD _{0.05}	1.6	1.9	1.1

 Table 2. Zoysia turf quality and color in response to nutrient sources, biostimulants, and soil amendments.¹

¹ All values represent the mean of three replications. Means within a column that result in a difference less than the LSD given at the bottom of that column when subtracted from any other mean within the column are not different from that mean. ² Turf quality is based on a 1-9 scale where 1=very poor turfgrass quality and 9=excellent turfgrass quality.

GROWTH RETARDANT RESEARCH AT THE UNIVERSITY OF ILLINOIS

Evaluation of Primo Applied in Tank Mixes with Other Herbicides

J.E. Haley and T.W. Fermanian

Research Protocol:	Evaluation of Primo Applied in Tank Mixes with Other Herbicides
Location:	Ornamental Horticulture Research Center, Urbana, IL
Turf:	Kentucky bluegrass.
Application of Treatments:	date applied - May 20, 1994, all treatments; liquid herbicides - applied with a CO ₂ backpack sprayer; spray volume - 40 gpa.
Turf Maintenance:	mowing height - 2 inches, mowed weekly, fresh weight taken for each plot; pesticides - no additional pesticides; imgation -as needed to prevent wilt.
Experimental Design:	RCB; 3 replications.

Mowing continues to use the greatest number of resources in a turf management program. Kentucky bluegrass turf, particularly in early spring, has a high mowing requirement. The use of plant growth regulators (PGRs) can help to slow down the vertical expansion of bluegrass turfs and minimize this mowing requirement. A new plant growth regulating material, Primo (trimexapac ethyl, Ciba Giegy Corporation), is being investigated for its ability to reduce vertical growth of Kentucky bluegrass. This research examined the use of Primo in tank mixes with other

commonly used turf herbicides. Herbicides used in this evaluation included LESCO PreM 60WP (pendimethalin, LESCO, Inc.) and Barricade 65WG (prodiamine, Sandoz Crop Protection), both preemergence crabgrass control herbicides; Dimension 1EC (dithiopyr, Monsanto Agricultural Co.), a pre and postemergence crabgrass control herbicide; Acclaim 1EC (fenoxaprop, AgrEvo), a postemergence crabgrass control herbicide; and Confront 3SL (triclopyr and clopryalid, DowElanco), a postemergence broadleaf weed herbicide.

Data were recorded for turf color and injury (Table 1 and 2). Color evaluations were made on a scale of 1 to 9 with one equaling tan turf and 9 equaling the darkest possible turf. Injury evaluations were made on a scale of 1 to 9 with one equaling dead turf and 9 equaling no visible turf injury. Plots were also evaluated for fresh weight production (Table 3).

		Color ²						
Tank Mix	Rate lb ai/A	<u>6-01</u> 12 DAT	<u>6-09</u> 20 DAT	<u>6-17</u> 28 DAT	<u>6-28</u> 39 DAT	<u>7-08</u> ns 49 DAT		
Primo 1EC	0.25	7.7b	7.7b	7.3bc	6.7bc	7.0		
Primo + PreM 60WP	0.25 + 3.0	7.3b	7.7b	8.0c	7.7c	7.0		
Primo + Confront 3SL	0.25 + 0.75	8.7b	7.7b	7.7bc	6.7bc	7.0		
Primo + Dimension 1EC	0.25 + 0.5	7.7b	8.0b	7.3bc	7.3bc	7.0		
Primo + Barricade 65WG	0.25 + 0.5	7.0ab	7.7b	7.0b	6.3ab	7.0		
Primo + Acclaim 1EC	0.25 + 0.18	5.0a	4.7a	4.7a	5.3a	7.0		
Untreated check		8.3b	7.7b	7.0b	7.7c	7.0		

 Table 1. The evaluation of the color of a Kentucky bluegrass turf treated with Primo applied in tank mixes with other herbicides.¹

Table 2. The evaluation of the injury to a Kentucky bluegrass turf treated with Primo applied in tank mixes with other herbicides.¹

Tank Mix	<u>Rate</u> lb ai/A	<u>6-01</u> 12 DAT	<u>6-09</u> 20 DAT	<u>6-17</u> 28 DAT	<u>6-28</u> 39 DAT	<u>7-08</u> ns 49 DAT
Primo 1EC	0.25	7.7b	7.0b	7.0b	7.3bc	9.0
Primo + PreM 60WP	0.25 + 3.0	7.7b	7.3b	7.0b	8.0c	9.0
Primo + Confront 3SL	0.25 + 0.75	8.0b	7.0b	6.7b	7.0b	8.3
Primo + Dimension 1EC	0.25 + 0.5	7.7b	6.3b	7.0b	7.7bc	.9.0
Primo + Barricade 65WG	0.25 + 0.5	8.0b	6.7b	6.3b	7.3bc	9.0
Primo + Acclaim 1EC	0.25 + 0.18	5.0a	4.0a	4.7a	5.0a	9.0
Untreated check		9.0c	9.0c	9.0c	9.0d	9.0

¹All values represent the mean of 3 replications. Means in the same column with the same letter are not significantly different at the 0.05 level as determined by Fisher's Protected Least Significant Difference test.

² Color evaluations are made on a 1-9 scale, where 1=tan and 9=darkest green.

^{ns} Ns indicates that no significant difference was found among the means in this group of data at the 0.05 level as determined by Fisher's Protected Least Significant Difference test.

³ Injury evaluations are made on a scale of 1-9, where 9 = no visible injury to the plant and 1 = plant necrosis.

			ght ²		
Tank Mix	Rate lb ai/A	<u>5-26</u> 6 DAT	<u>6-01</u> 12 DAT	<u>6-08</u> 19 DAT	<u>6-15</u> 26 DAT
Primo 1EC	0.25	44.6ab	18.2ab	16.3a	10.0a
Primo + PreM 60WP	0.25 + 3.0	45.0ab	23.4b	23.8a	11.1a
Primo + Confront 3SL	0.25 + 0.75	58.5b	19.5ab	17.3a	13.4a
Primo + Dimension 1EC	0.25 + 0.5	46.9ab	19.7ab	17.8a	9.7a
Primo + Barricade 65WG	0.25 + 0.5	41.6ab	15.1ab	14.3a	8.9a
Primo + Acclaim 1EC	0.25 + 0.18	29.9a	7.9a	12.6a	10.8a
Untreated check		93.5c	56.4c	75.0b	73.8b
	(c	ontinued)			

 Table 3. The evaluation of the injury to a Kentucky bluegrass turf treated with Primo applied in tank mixes with other herbicides.¹

Table 3. The evaluation of the injury to a Kentucky bluegrass turf treated with Primo applied in tank mixes with other herbicides.¹ (continued)

		Weight ²					
Tank Mix	<u>Rate</u> lb ai/A	<u>6-22</u> 33 DAT	<u>6-29</u> 40 DAT	<u>7-06</u> ns 47 DAT	<u>7-18</u> ns 59 DAT		
Primo 1EC	0.25	11.6a	36.9a	53.2	45.5		
Primo + PreM 60WP	0.25 + 3.0	10.5a	33.1a	45.7	34.3		
Primo + Confront 3SL	0.25 + 0.75	13.9a	33.3a	52.0	52.0		
Primo + Dimension 1EC	0.25 + 0.5	10.8a	40.5a	50.4	44.1		
Primo + Barricade 65WG	0.25 + 0.5	8.8a	28.2a	42.5	38.0		
Primo + Acclaim 1EC	0.25 + 0.18	12.6a	40.2a	58.1	56.1		
Untreated check		44.8b	55.4b	51.6	45.4		

¹All values represent the mean of 3 replications. Means in the same column with the same letter are not significantly different at the 0.05 level as determined by Fisher's Protected Least Significant Difference test. ²Weight refers to grams fresh weight per 14.5 sq ft.

^{ns} Ns indicates that no significant difference was found among the means in this group of data at the 0.05 level as determined by Fisher's Protected Least Significant Difference test.

Storage Carbohydrate Content of Creeping Bentgrass Receiving Multiple Applications of Growth Retardants

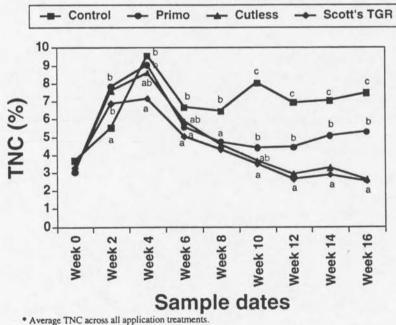
Sangwook Han and T. W. Fermanian

The total nonstructural carbohydrate (TNC) content of plant tissue is an indirect estimate of the reserve energy available to plants. Carbohydrate reserves are essential for the survival and tissue production when the respiration rate exceeds photosynthetic activity. The total nonstructural carbohydrate content of plant tissues are often used as an indicator of the physiological stress status of a turfgrass. Turfgrass growth retardants (TGR) may affect accumulation and distribution of nonstructural carbohydrates among plant tissue. Consequently, this change could affect positively or negatively turf tolerance to environmental stress or its recuperative potential from damage or injury.

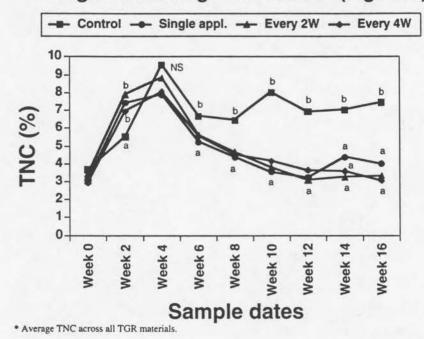
Research Protocol:	Storage Carbohydrate Flux of Turfs Receiving Sequential Applications of Growth Retardants
Location:	Greenhouse of Plant Science Lab; Urbana, IL
Turf :	"Penncross" Creeping bentgrass.
Treatments:	growth regulator - Primo (0.25 lb ai/A), Cutless (0.5 lb ai/A), Scott's TGR (0.25 lb ai/A).
Application intervals:	single application, every 2 weeks ; every 4 week applications during first 2 months.
Turf Maintenance:	mowing height - 1.0 inch, mowed every other day; fertilization - 16.7 lb N/A/week.
Tissue sample:	root and shoot (every 2 weeks for 4 months).
Measurement:	storage carbohydrates and root dry weight.
Experimental Design:	factorial arrangement in a RCB; 5 reps.

Since TGR applications are becoming more common place in fine turf management, detailed information on the influence of TGRs is needed to utilize TGRs correctly and efficiently. A single application of TGRs will suppress turf growth for 2 short period. generally for 4 to 10 weeks. Thus. the determination of carbohydrate status of turfs receiving multiple applications of growth retardants could be useful for long term programming of the use of TGRs.

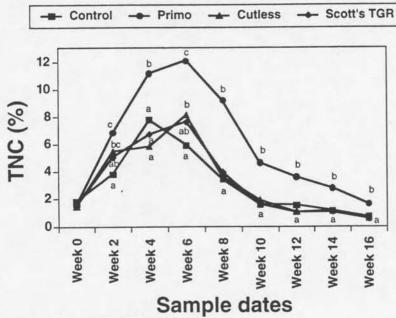
Objectives of this study were (1) To determine the long-term storage carbohydrate

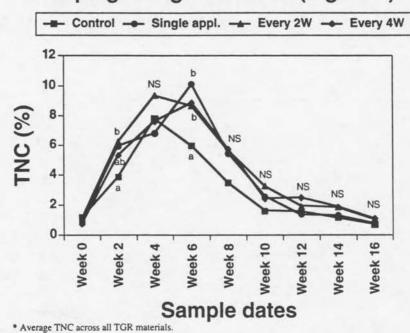

dynamics of turfs receiving multiple application of turfgrass growth retardants (2) To determine TGR effects on the storage carbohydrate status at different application intervals and total rates.

Primo, Cutless and Scott's TGR significantly increased total nonstructural carbohydrates (TNC) of creeping bentgrass at 2 weeks after their application but TNC began to decreace at 4 WAT compared to the control (Figure 1). However, there was no clear difference among the different application intervals (Figure 2). For root tissue,

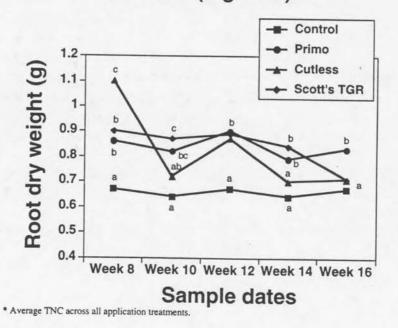

creeping bentgrass treated with Primo had higher quantities of total nonstructural carbohydrate for all sampling dates as compared to the control, Cutless, or Scott's TGR treated turf (Figure 3). There were no differences in root TNC content among different application intervals (Figure 4). Creeping bentgrass treated with Primo, Cutless, or Scott's TGR also showed more root dry weight than the control (Figure 5).

Turfs receiving growth regulators had unacceptable visual discoloration during the hot summer in the greenhouse, which indicates that the inappropriate use of growth regulators during stressful periods may cause unexpected damage. These findings are the preliminary results of continuing studies and should not be translated as final conclusions of effects of TGRs on storage carbohydrate. This study will be repeated in both the greenhouse and field.


TGR effects on total nonstructural carbohydrate (TNC) of creeping bentgrass above ground tissue* (Figure 1)


Effects of application intervals on TNC of creeping bentgrass above ground tissue* (Figure 2)

TGR effects on total nonstructural carbohydrate (TNC) of creeping bentgrass roots* (Figure 3)



* Average TNC across all application treatments.

Effects of application intervals on TNC of creeping bentgrass roots* (Figure 4)

Creeping bentgrass root response to the application of growth retardants* (Figure 5)

GROWTH RETARDANT RESEARCH AT SOUTHERN ILLINOIS UNIVERSITY

Evaluation of Growth Regulator Combinations on Kentucky Bluegrass Turf and Efficacy of ProGibb in Negating the Effects of Primo

Dr. Kenneth L. Diesburg

Research Protocol:	Growth Regulator Evaluation
Location:	Horticulture Research Center, Carbondale, IL
Site:	soil - Hosmer clay loam, pH 6.5; turf - three-year old 'Huntsville' Kentucky bluegrass; irrigation to - prevent moisture stress; fertilization - 4 lb N/Wyr, SCU and Nitroform; pesticides - Banner preemergent applied, April 14, Trimec postemergent applied, March 10.
Methods:	liquid materials - CO ₂ backpack sprayer with 5' boom; spray volume - 150 gal/A water; ProGibb applied to half plots immediately after application of whole plot treatments; fresh clipping weights recorded immediately following mowing of plots; mowing - individual plot clippings were of a single pass of a rotary mower at 2 1/2" clipping height; alleys - mowed between ranges of plots at 2" clipping height to avoid error in mowing between adjacent plots.
Experimental Design:	RCB; 3 replications.

Effects of Primo and Progibb were evident within five days after treatment. Progibb overcame the effects of Primo (2x and 3x trt.) too much. Leaf elongation rate was excessive beyond that of the control. From five to ten days after treatment turfgrass quality, though not lower than the UTC. was of a different quality (Table 1). The leaves were lighter green and more lush (thinner cell walls. apparently trt.). At 17 days after treatment, turfgrass quality of Progibb-treated plots was lower than that of the UTC. Density was the primary criterion that had diminished. Evidence of this is seen in the

clippings being less than that of the UTC. Progibb effects ended within three weeks after treatment, but Primo effects lasted to six weeks after treatment. The Primo effect was not visible at four weeks after treatment, as vigorous leaf elongation had resumed. But canopy height and clipping weight were less than that of the UTC (Tables 2 and 3). Turfgrass quality of the UTC decreased by eight weeks after treatment because of brown patch pressure. Plots treated with Primo, with and without Progibb, had higher turfgrass quality than the UTC during that time.

Application of Florel was more effective than Primo, but turf quality was reduced.

		Da		reatment, 6		-
Treatment	5	9	17	42	58	Avg
UTC	7.7	8.0	8.3	9.0	6.5	7.9
Primo 0.75 oz mat/M	7.3	7.7	7.3	9.0	8.2	7.9
Primo 0.75 oz/M	8.3	8.0	6.3	8.4	8.1	7.8
withCutless 1 lb ai/A						
Primo 1.50 oz mat/M with	6.7	8.0	7.0	9.0	8.3	7.7
Urea 0.75 lb N/M						
Progibb ¹ / ₂ plot (Primo 1.50	8.0	8.0	6.3	8.7	8.3	7.9
oz mat/M with Urea 0.75 lb					- 30	
N/M trt.)						
Cutless 1 lb ai/A	7.0	8.3	7.7	8.3	7.3	7.7
Primo 2.25 oz/M	7.7	7.7	6.0	8.5	8.3	7.6
Progibb ¹ / ₂ plot ² (Primo	8.7	8.3	6.0	8.5	8.3	8.0
2.25 oz/M trt.)						
EXP 31039A 2 lb ai/A	7.7	7.3	7.3	7.8	7.5	7.5
EXP 31039A 4 lb ai/A	7.0	7.0	6.3	8.8	8.2	7.5
Primo 1.50 oz mat/M	6.3	7.3	6.3	8.8	8.2	7.4
Progibb ¹ / ₂ plot (Primo 1.50 oz mat/M trt.)	8.3	8.7	6.0	8.5	8.2	7.9
Primo 2.25 oz mat/M	6.7	7.3	6.7	9.0	6.8	7.3
N 0.75 lb/M ¹ / ₂ plot (Primo	6.7	7.3	6.7	9.0	7.2	7.4
2.25 oz mat/M trt.)						
Florel 4 lb ai/A	7.0	7.7	6.3	8.2	7.5	7.3
Primo 1.50 oz mat/M	7.7	7.3	5.7	7.0	6.8	6.9
Progibb 0.25 oz/M						
Progibb 1/2 plot (Progibb	7.7	8.0	5.7	7.0	6.8	7.0
0.25 oz/M trt.)						
Primo 0.75 oz/M with	6.3	7.3	6.0	7.7	6.3	6.7
Paclobutrazol 0.375 lb ai/A						
LSD 0.05	0.6	0.7	1.0	1.2	0.5	0.2
0.03						

 Table 1. Turfgrass quality ratings¹ of Huntsville Kentucky bluegrass in response to growth regulators, 1994, Southern Illinois University.

 $^{^1}$ Ratings based on a scale of 1-9, 9=best combination of color, texture and density 2 Progibb applied to half the plot at 0.25 oz/M

		I	Days After	Freatment, 6	5/29	
Treatment	5	9	17	42	58	Avg
EXP31039A 4 lb	7.8	6.7	5.5	8.4	8.1	7.3
ai/A						
Primo 1.50 oz mat/M	7.3	7.0	5.7	8.7	8.8	7.6
Progibb ¹ / ₂ plot '(Primo 1.50 oz mat/M trt.)	13.3	13.0	10.0	9.0	9.2	10.8
Florel 4 lb ai/A	9.7	7.3	5.3	8.2	7.8	7.7
Primo 0.75 oz/M withPaclobutrazol 0.375 lb ai/A	8.3	8.0	5.0	8.8	8.8	7.8
EXP 31039A 2 lb ai/A	8.3	7.7	6.3	8.7	8.0	7.8
Primo 0.75 oz/M	7.7	6.3	5.3	9.7	10.5	7.9
with Cutless 1 lb ai/A						
Primo 2.25 oz mat/M	7.0	7.0	5.7	9.0	10.7	7.9
N 0.75 lb/M ¹ / ₂ plot (Primo 2.25 oz mat/M trt.)	7.0	7.0	5.7	8.3	11.3	7.9
Primo 2.25 oz mat/M	8.7	7.3	4.7	9.7	10.0	8.1
Progibb ¹ / ₂ plot (Primo 2.25 oz mat/M trt.)	13.3	12.7	10.7	9.0	9.7	11.1
Primo 0.75 oz mat/M	8.0	7.0	6.0	10.5	10.0	8.3
Primo 1.50 oz mat/M with Urea 0.75 lb N/M	9.0	8.3	7.0	9.7	10.2	8.8
Progibb ¹ / ₂ plot (Primo 1.50 oz mat/M with Urea 0.75 lb N/M trt.)	13.7	13.7	10.7	9.7	10.3	11.6
Cutless 1 lb ai/A	9.7	10.0	10.0	9.7	9.8	9.8
UTC	9.0	10.0	11.0	10.2	9.7	10.0
Primo 1.50 oz mat/M with Progibb 0.25 oz/M	12.7	13.3	12.0	8.0	8.5	10.9
Progibb $\frac{1}{2}$ plot (Primo 1.50 oz mat/M with Progibb 0.25 oz/M trt.)	12.7	14.7	12.0	7.3	7.8	10.9
LSD 0.05	0.6	0.8	0.9	1.7	0.5	0.2

 Table 2. Canopy heights in centimeters of Huntsville Kentucky bluegrass in response to growth regulators 1994 Southern Illinois University.

¹ Progibb applied to half the plot at 0.25 oz/M

Table 3. Fresh clipping weights in grams of Huntsville Kentucky bluegrass in response	se
to growth regulators 1994 Southern Illinois University.	

			Days After				
Treatment	9	17	27	35	44	58	Total
Primo 1.50 oz mat/M	32.2	6.8	3.2	4.3	48.3	16.4	111.1
Progibb ¹ / ₂ plot ¹	77.7	10.7	7.4	10.3	72.4	24.7	203.4
(Primo 1.50 oz		10.7		10.5			200.1
mat/M trt.)							
Florel 4 lb ai/A	47.8	1.5	3.4	5.7	50.9	10.0	119.2
EXP 31039A 4 lb	40.6	6.7	8.8	5.7	51.8	16.5	130.2
ai/A							
Primo 0.75 oz/M	37.8	1.2	3.9	11.7	63.6	17.8	136.1
Primo 2.25 oz mat/M	32.2	1.2	3.8	8.1	64.6	28.1	138.0
N 0.75 lb/M ¹ / ₂ plot	32.8	2.2	5.3	8.8	65.7	28.6	143.4
(Primo 2.25 oz							
mat/M trt.)							
Primo 1.50 oz mat/M	80.3	4.7	2.5	3.6	38.9	12.1	142.1
with Progibb 0.25							
oz/M	00.7	17	2.0	4.2	26.6	10.4	151 0
Progibb ¹ / ₂ plot	88.7	6.7	3.2	4.3	36.6	12.4	151.9
(Primo 1.50 oz							
mat/M with Progibb 0.25 oz/M trt.)							
Primo 2.25 oz mat/M	53.0	3.0	3.0	5.4	61.4	24.5	150.1
Progibb ¹ / ₂ plot	94.1	9.5	3.2	9.9	82.0	30.4	229.2
(Primo 2.25 oz	24.1	7.5	5.2	2.2	02.0	50.1	40 40 / · 40
mat/M trt.)							
Primo 0.75 oz/M	51.9	1.6	4.5	6.9	77.5	26.3	168.7
with Cutless 1 lb ai/A							
Cutless 1 lb ai/A	44.3	8.4	12.1	11.8	65.3	27.6	170.8
Primo 1.50 oz mat/M	51.5	24.7	3.3	6.7	68.1	18.3	172.6
with Urea 0.75 lb							
N/M							
Progibb 1/2 plot	88.4	27.8	6.9	10.3	72.9	25.3	231.4
(Primo 1.50 oz							
mat/M with Urea							
0.75 lb N/M trt.)							
EXP 31039A 2 lb	56.8	19.6	10.4	16.3	63.7	11.4	178.2
ai/A	07.5		11.0	147	00 1	00.0	170
Primo 0.75 oz mat/M	37.5	1.1	11.8	14.7	89.6	23.8	178.6
UTC	56.3	13.8	16.9	16.7	77.8	16.7	198.1
LSD 0.05	8.9	3.8	1.4	2.2	5.8	4.1	6.6

 $^{\rm l}$ Progibb applied to half the plot at 0.25 oz/M

PLANT PATHOLOGY FIELD RESEARCH CONDUCTED AT THE UNIVERSITY OF ILLINOIS

H.T. Wilkinson, R.T. Kane and L.M. Ortiz

Fungicide trials in 1994 included four separate trials conducted at the Urbana, IL Research Center: one for dollar spot, one brown patch, and two for summer patch. The study of fungicide control of resistant populations of the fungi which cause dollar spot was continued for the third year at the Ridgemoor Country Club in Chicago, IL. A severe infestation of dollar spot and brown patch developed on the bentgrass green at the Urbana Research Center. The dollar spot plot (Plot 5), therefore, was also rated for brown patch and the brown patch (Plot 3) results include ratings for dollar spot severity. Unfortunately, dollar spot did not develop at the Ridgemoor Country Club location. No efficacy data is available from Chicago on resistant dollar spot fungi this year. Summer patch was evaluated in two plots in Urbana, one having a natural disease infestation and one being artificially inoculated with the pathogen. No disease symptoms developed in the artificially inoculated plot (Plot 1), therefore summer patch data is from the naturally infested area (Plot 2). Treatments, results, and the interpretation of results are presented.

Data for efficacy is reported for the three diseases evaluated at the Urbana Research Center. The diseases were evaluated as follows. The data values represent the percentage of area within a plot that is blighted by dollar spot or brown patch symptoms. The greater the number, the poorer the disease control. Generally, the severity of the brown patches changed rapidly. The reason for this, was the rapid rate of grass growth and recovery from disease. If a chemical fungicide controls brown patch, then the grass growth will rapidly (less than a week) mask the symptoms. We do not consider it adequate control, if the symptoms of brown patch were weak and still visible. Any treatment having a 0.67 or less rating for disease symptoms reduced brown patch severity. In our opinion, however, only a rating of less than 0.3, after the second or third application, was an acceptable level of control. No treatment in the dollar spot or brown patch plots produced any injury or discoloration to the turfgrass.

The data values for summer patch represent the percentage of area within the plot that is discolored and shows summer patch symptoms. The intensity of the disease was rated using a scale of 0-2. Zero equals low intensity but noticeable disease; one equals moderate intensity (off-colored leaf tissue but not necrotic); and two equals high intensity with brown and necrotic leaf tissue.

This year one trial included urea. In past years, we have found that mixing urea with fungicides has been very effective in reducing the amount of required fungicide, while improving the control of dollar spot and increasing turf quality. This year the tankmix did not control dollar spot more effectively than the chemical treatment alone.

This fertilizer tank mix concept was expanded to the control of brown patch. Instead of urea, an organic fertilizer was used but there was no clear indication that the addition of an organic fertilizer enhanced the control of brown patch. Dollar spot control in this same area, however, did seem to respond favorably to this treatment.

Most fungicide treatments provided adequate control of dollar spot at the Urbana location. All the fungicide treatments provided adequate control of brown patch at the

Research Protocol:	Bentgrass Dollar Spot Fungicide Trial
Location:	Ornamental Horticulture Research Center, Urbana, IL.
Site Preparation:	pathogen inoculation: natural inoculum, no artificial inoculum was applied; fertilized at 2.5 kg N/M/yr; pesticides applied as need.
Plot Maintenance:	mowing height- 0.63 cm every other day; irrigation- natural rainfall plus 2.5 cm/week if needed. topdressing- bimonthly; 80:20 sand/soil mixture.
1994	Initial Fungicide Treatments applied on Julian day 173 (June 22, 1994). Additional applications applied at a 14, 21 or 28 day intervals. Last application on Julian day 230 (August 18, 1994). applied in 12.5 L water/M; piot size- 4 ft x 5 ft.
Experimental Design:	RCB; 3 replications.

Urbana location. The summer patch disease pressure on the Urbana farm decreased in the plot naturally towards the end of July. The last fungicide treatment was applied on July 19, 1994. All treatments provided good control and reduced the discoloration of the turf for up to one month after the last treatment. After this time, however, some plots still had patch symptoms which were moderately intense.

These comments represent my preliminary research on summer patch. More needs to be done and research is slow and costly. I hope that these comments are useful and will encourage you and your company to continue to support my research. Thank you for your interest in the University of Illinois Turfgrass Pathology Research Program.

Fungicide Control Of Dollar Spot On Bentgrass

Dollar spot continues to develop on creeping bentgrass, bluegrass, ryegrass and several other minor grasses. In addition, resistance to the fungicides by the fungal pathogens that cause this disease is a continuing threat.

Testing the efficacy and continuing to evaluate the rates and timing intervals of experimental and registered fungicides was the focus of the 1994 research program. Also tested this year was the integration of fungicides with nitrogen fertilizer. Plots were evaluated for dollar spot (Figures 1a-1f) and brown patch (Figures 1g-1l) nine times throughout the growing season.

Trt. No.	Manufacturer	Chemical Name	Rate (cf oz/M)	Rate (cf/liter)	Spray Interval (in days)
1.	Rhone	EXP10452A	0.5	0.85 g	14
	Poulenc				
2.	Rhone	EXP10452A	0.75	1.27 g	14
	Poulenc			C	
3.	Rhone	EXP10370A	1.5	2.5 g	14
76. D).	Poulenc			U	
4.	Rhone	EXP10370A	2.0	3.4 g	14
	Poulenc			0	
5.	Rohm-Haas	Eagle 40W	0.6	1.02 g	28
6.	Isk	Daconil 2787 4.17F	6.0	10.6 ml	14
7.	Isk	Daconil 825 SDG	3.8	6.5 g	14
8.	Isk	Fluazinam 500F	0.5	0.88 ml	14
9.	Isk	Fluazinam 500F	1.0	1.8 ml	21
10.	Isk	ASC-67098 Z	3.6	6.1 g	21
11.	Isk	Fluazinam 75 SDG	0.67	1.14 g	21
12.		Thalonil 90DF	3.5	5.9 g	14
	Terra Terra		6.0	10.6 ml	14
13.		TRA-0028 (Thalonil 4L)			14
14.	DowElanco	Rubigan 50W	0.25	0.42 g	
15.	DowElanco	Rubigan 50W	0.25	0.42 g	21
16.	DowElanco	Rubigan 50 WSP	0.125	0.21 g	14
17.	DowElanco	Rubigan 50 WSP + Urea	0.25 +	0.42 +	14
			8.0	13.6 g	
18.	DowElanco	Rubigan 50 WSP + Urea	0.125 +	0.21 +	14
			8.0	13.6 g	
19.	BASF	Curalan DF	2.0	3.4 g	21
20.	BASF	Curalan DF	2.0	3.4 g	28
21.	Ciba	Banner 1.1.E	0.5	0.88 ml	14
22.	Ciba	Banner + Daconil 2787	0.5 +	0.88 +	14
			4.0	7.1 ml	
23.	Ciba	Banner + Daconil 2787	1.0 +	1.8 +	21
			4.0	7.1 ml	
24.	Ciba	Banner + ProStar 50 WP	0.5 +	0.88 ml	14
			2.0	+ 3.4 g	
25.	Ciba	Banner + ProStar 50 WP	1.0 +	1.8 ml +	21
			2.0	3.4 g	
				-	
26.		Urea	8.0	13.6 g	14
27.	Sandoz	Sentinel 40 WG	0.16	0.27 g	28
			C. Constant and	U	
28.	Sandoz	Sentinel 40 WG	0.25	0.42 g	28
29.	Sandoz	Sentinel 40 WG	0.25	0.42 g	42
	Guideb			- 0	
30.		Water			
		ater			

Table 1. 1994 Dollar Spot Research - Plot 5

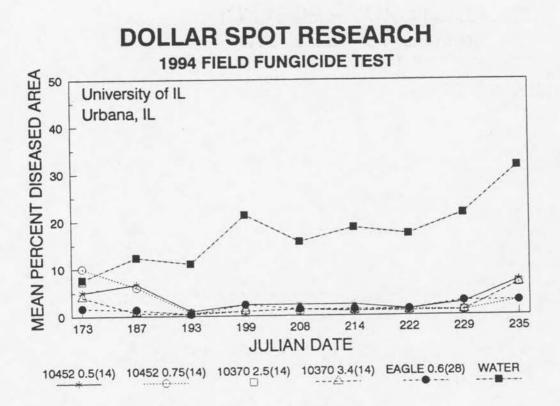


Figure 1a. Control of dollar spot on bentgrass.

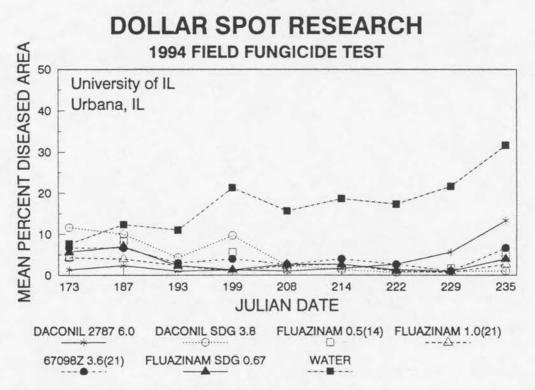


Figure 1b. Control of dollar spot on bentgrass.

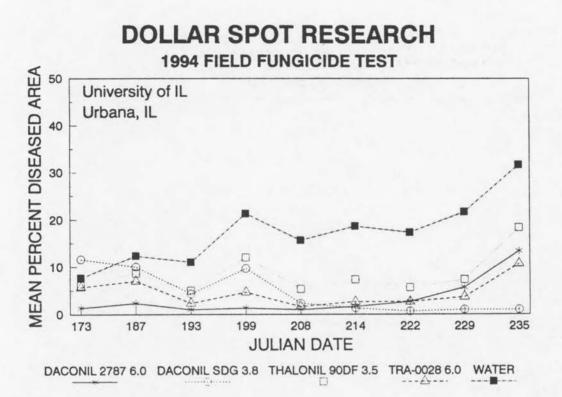


Figure 1c. Control of dollar spot on bentgrass.

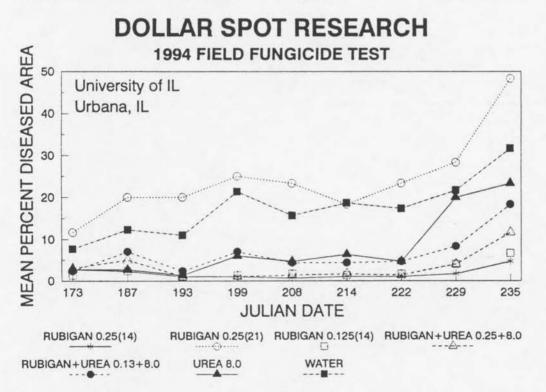


Figure 1d. Control of dollar spot on bentgrass.

79

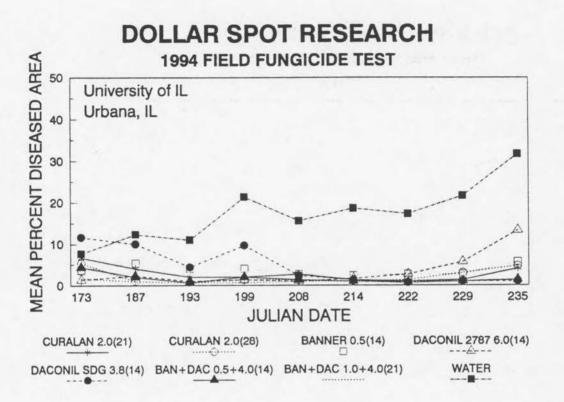


Figure 1e. Control of dollar spot on bentgrass.

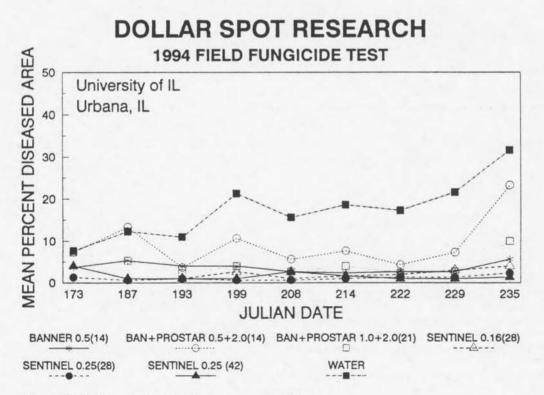


Figure 1f. Control of dollar spot on bentgrass.

Figure 1g. Control of brown patch on bentgrass within the dollar spot trial.

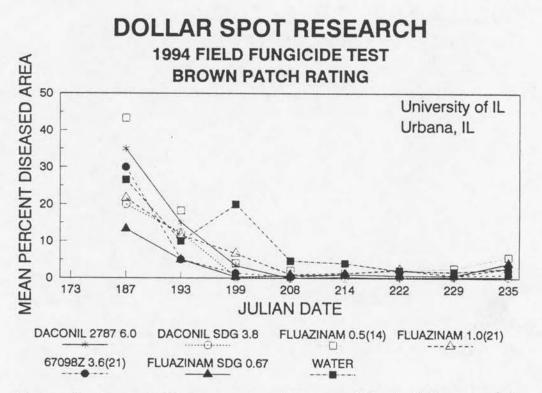
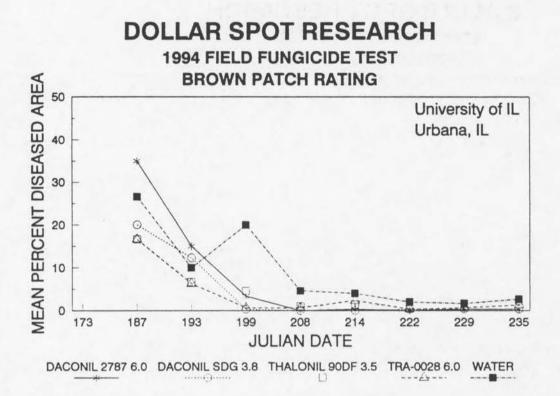



Figure 1h. Control of brown patch on bentgrass within the dollar spot trial.

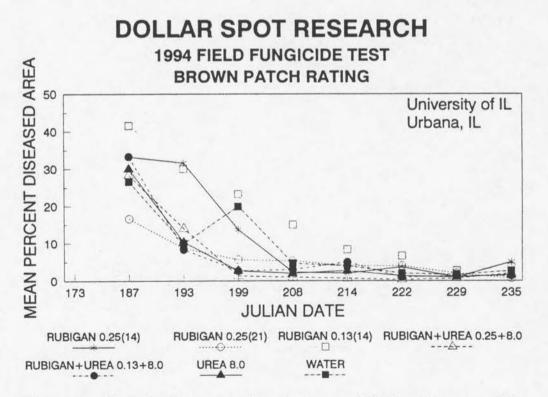


Figure 1j. Control of brown patch on bentgrass within the dollar spot trial.

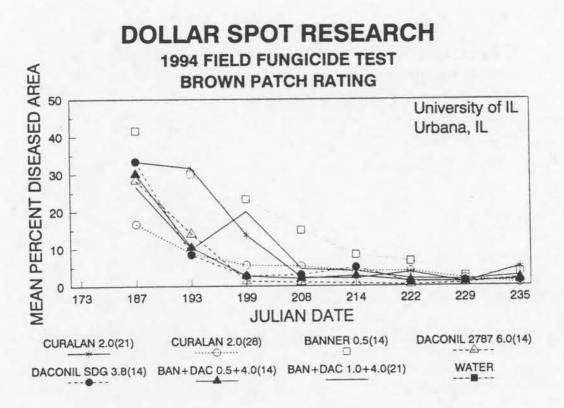


Figure 1k. Control of brown patch on bentgrass within the dollar spot trial.

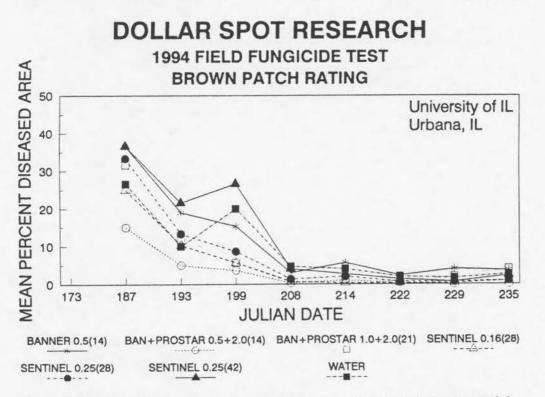


Figure 11. Control of brown patch on bentgrass within the dollar spot trial.

Fungicide Trials For The Control Of Dollar Spot On Bentgrass At Ridgemoor Country Club, Chicago

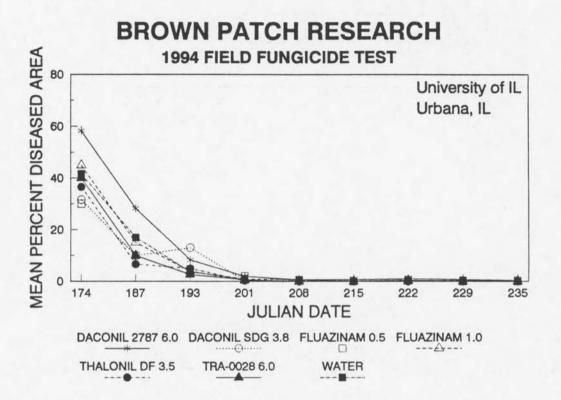
Research	
Protocol:	Bentgrass Dollar Spot
	Fungicide Trial
Location:	Ridgemoor Country Club,
	Chicago, IL.
Site	pathogen inoculation - natural infestation
Preparation:	fertilization - 2.5 kg N/M/yr;
	pesticides - applied as need.
Plot	mowing height - 0.3 cm every other day;
Maintenance:	irrigation - natural rainfall plus 2.5 cm/week if needed.
	topdressing - none.
1994	initial fungicide treatments - applied on
	Julian day 198 (July 15, 1994);
	Additional applications - be applied at 14,
	21 or 28 day intervals;
	applied in 27.7 L water/M;
	plot size-3 ft x 3 ft.

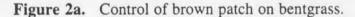
Previous work, in 1992 and 1993, with dollar spot at this site indicated some evidence of fungicidal resistance by the fungus that causes this disease. This fungus has shown resistance to fungicides in the past, however, the resistance we previously observed was being expressed against a different class of chemicals. In 1994, this fungicide trial was to continue looking at the dynamics of this phenomenon that was observed in 1992 and 1993, as well as, test the efficacy of new chemicals and evaluate registered fungicides. All fungicide treatments were applied on July 15, 1994. After this application, however, the trial was discontinued because there was no disease development.

Trt. No.	Manufacturer	Chemical Name	Rate cf oz/M	Rate cf/liter	Spray Interval (days)
1.	Rohm-Haas	Eagle 40 W	0.6	0.61 g	28
2.	Rohm-Haas	Eagle 40 W + Urea	0.6 + 8.0	0.61+ 8.2 g	28
3.	Rohm-Haas	Eagle 40 W + Urea	0.6 + 16	0.61 + 16.3 g	28
4.	Zeneca	ICIA5504 + Daconil 2787	0.4 + 3.0	0.41 g + 3.2 ml	14
5.	Zeneca	ICIA5504 + Daconil 2787	0.4 + 3.0	0.41 g + 3.2 ml	21
6.	Zeneca	ICIA5504 + Daconil 2787	0.4 + 3.0	0.41 g + 3.2 ml	28
7.	Zeneca	ICIA5504 + Daconil 2787 +	0.4 + 3.0 + 2.0	0.41 g + 3.2 +	21
8.	Zeneca	Chipco ICIA5504 + Chipco 26019	0.4 + 2.0	2.1 ml 0.41 g + 2.1 ml	14
9.	Zeneca	ICIA5504 + Chipco 26019	0.4 + 2.0	0.41 g + 2.1 ml	21
10.	Zeneca	ICIA5504 + Chipco 26019	0.4 + 2.0	0.41 g + 2.1 ml	28
11.	Zeneca	Daconil 2787	3.0	3.2 ml	14
12.	Zeneca	Chipco 26019	2.0	2.1 ml	14
13.	Zeneca	ICIA5504 50 WG	0.4	0.41 g	14
14.		Urea	8.0	8.2 g	28
15.		Urea	16.0	16.3 g	28
16.	Isk	Fluazinam 500F	0.5	0.53 ml	14
17.	Isk	Fluazinam 500F	1.0	1.1 ml	28
18.		Water			177.77
19.	Ciba	CGA 173506	5.0 g	0.18 g	14
20.	Ciba	CGA 173506	7.0 g	0.25 g	14

 Table 2.
 1994 dollar spot research at Ridgemoor Country Club (no disease development).

Research Protocol:	Bentgrass Brown Patch Fungicide Trial
Location:	Ornamental Horticulture Research Center, Urbana, IL.
Site Preparation:	pathogen inoculation - natural infestation and laboratory produced inoculum <i>Rhizoctonia solani</i> applied once at 2.2 kg/M; fertilization - 2.5 kg N/M/yr; pesticides - applied as need.
Plot Maintenance:	mowing height - 0.63 cm every other day; irrigation - natural rainfall plus 2.5 cm/week if needed ; irrigation after inoculation - 0.5 cm of water every 8 hrs for a period of 5 days; topdressing - bimonthly; 80:20 sand/soil mixture.
1994	initial fungicide teatments - applied on Julian day 174 (June 23, 1994); additional applications - applied at a 14, 21 or 28 day intervals; last application Julian day 216 (August 4, 1994); applied in 27.7 L water/M; plot size- 3 ft x 4 ft.
Experimental Design:	CRD; 3 replications.


Fungicide Control Of Brown Patch On Bentgrass


The brown patch disease remains a problem on bentgrass golf greens in the Mid-west, because it develops each year and there are no exceptional control programs for it. This season, 35 different treatments were applied to diseased bentgrass and evaluated for their ability to control brown patch. Once again, this season we used a combination of natural and artificial inoculum of the pathogen to insure adequate disease pressure. We feel the results are meaningful. The research had area a uniform infestation of brown patch. We will continue to use this method to insure good pathogen pressure and reliable test results. It should be pointed out, that the pathogen (Rhizoctonia solani) used to inoculate

the grass was the same as that which naturally inhabits the green. Plots were evaluated for brown patch (Figures 2a-2f) and dollar spot (Figures 2g-2l) nine times throughout the growing season.

Trt. No.	Manufacturer	Chemical Name	<u>Rate</u> oz cf/M	Rate cf/L	Spray Interva (days)
1.	ISK	Daconil 2787	6.0	6.4 ml	14
	ISK	Daconil 825 SDG			
2. 3.			3.8	3.9 g	14
5.	ISK	Fluazinam 500F	0.5	0.53 ml	14
4.	ISK	Fluazinam 500F	1.0	1.1 ml	21
5.	Rohm-Haas	Eagle 40W	0.6	0.61 g	14
6.	Rohm-Haas	Fore FL	6.4	6.8 ml	14
7.	Тегта	Thalonil 90 DF	3.5	3.6 g	14
8.	Terra	TRA-0028 (Thalonil 4L)	6.0	6.4 ml	14
9.	Sandoz	Sentinel 40 WG	0.16	0.16 g	28
10.	Sandoz	Sentinel 40 WG	0.25	0.25 g	28
11.	Sandoz	Sentinel 40 WG	0.25	0.25 g	42
12.	AgrEvo	ProStar 50 WP	1.5	1.5 g	21
13.	AgrEvo	ProStar 50 WP +	1.0 + 4.0	1.02 g +	21
10.	1.9.0.10	Daconil 2787 F	1.0 7 4.0	4.3 ml	21
14.	BASF	Curalan DF	2.0	2.03 g	14
14.					
15.	Miles	Bayleton 25 T/O + Chlorothalonil 4.17	0.5 + 3.0	0.51 g + 3.2 ml	14
16.	Miles	Bayleton 25 T/O +	0.5 + 2.0	0.51 +	14
10.	TTILLOS	ProStar 50	0.0 1 2.0	2.0 g	1.4
17.	Miles	Bayleton 25 T/O +	1.0 + 2.0	1.02 +	21
17.	IVIIICS	ProStar 50	1.0 + 2.0		21
10	Miles		10.20	2.0 g	20
18.	Miles	Bayleton 25 T/O +	1.0 + 2.0	1.02 +	28
		ProStar 50		2.0 g	
19.	Miles	Bayleton	0.5	0.51 g	14
20.	Miles	Bayleton	1.0	1.02 g	28
21.	Ciba	Banner 1.1 E	0.5	0.53 ml	14
22.	Ciba	Banner + Daconil 2787	0.5 + 4.0	0.53 + 4.3 ml	14
23.	Ciba	Banner + Daconil 2787	1.0 + 4.0	1.1 +	21
~ 1	01	D a cor	0.5	4.3 ml	
24.	Ciba	Banner 3.6 GL	0.5	0.53 ml	14
25.	Ciba	Banner GL + Daconil	0.5 + 4.0	0.53 +	14
				4.3 ml	
26.	Ciba	Banner GL + Daconil	0.3 + 4.0	0.32 + 4.3 ml	21
27.	Zeneca	ICIA5504	11.4	11.6 g	14
28.	Zeneca	ICIA5504	11.4	11.6 g	28
29.	Zeneca	ICIA5504 ICIA5504	5.7	5.8 g	14
30.	BioPlus	Banner 1.1 E + BioPlus	1.0 + 3.6	1.1 + 3.8 ml	28
31.	Ciba	Banner 1.1 E	1.0	1.1 ml	28
32.	BioPlus	BioPlus	3.6	3.8 ml	14
33.	Ciba	Banner 1.1 E	0.5	0.53 ml	14
				0.53 m 0.53 +	
34.	BioPlus	Banner + BioPlus	0.5 + 3.6	0.55 + 3.8 ml	14
35.		Water			

Table 3. 1994 brown patch research - plot 3.

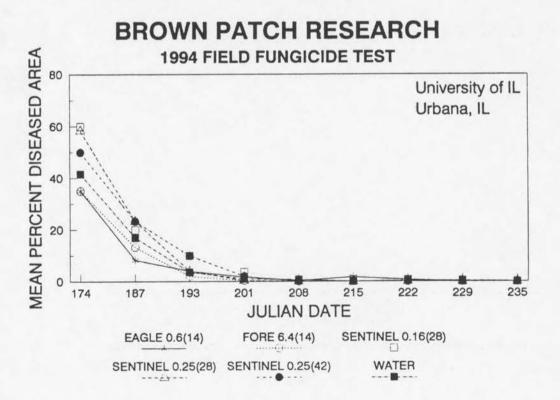


Figure 2b. Control of brown patch on bentgrass.

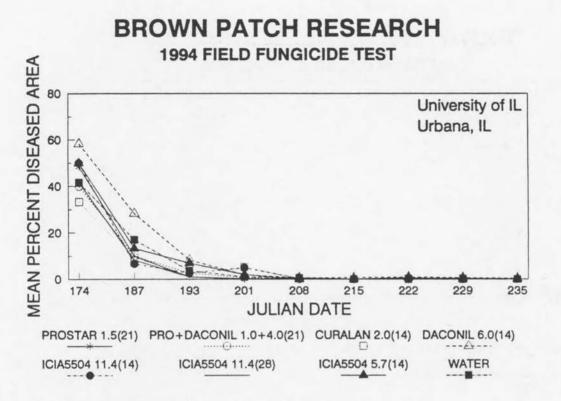


Figure 2c. Control of brown patch on bentgrass.

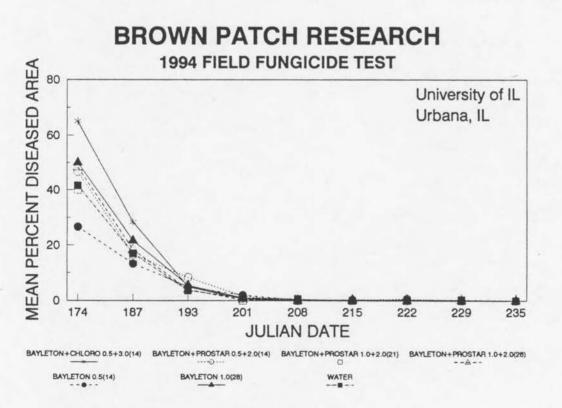


Figure 2d. Control of brown patch on bentgrass.

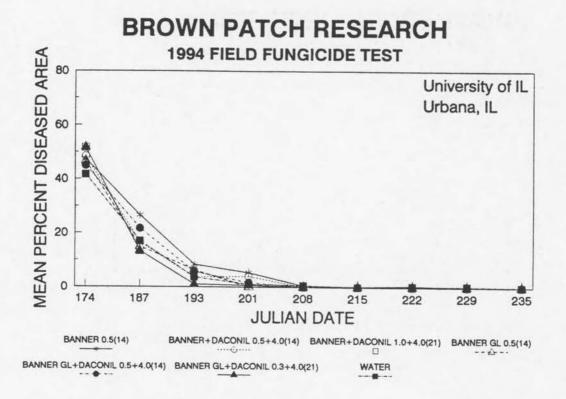


Figure 2e. Control of brown patch on bentgrass.

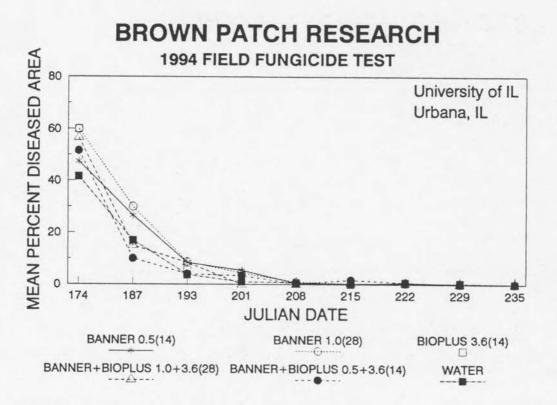


Figure 2f. Control of brown patch on bentgrass.

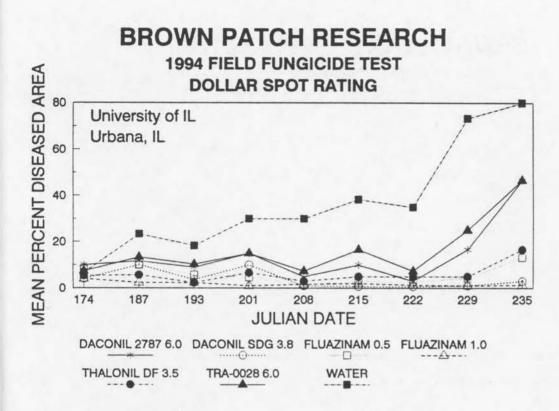
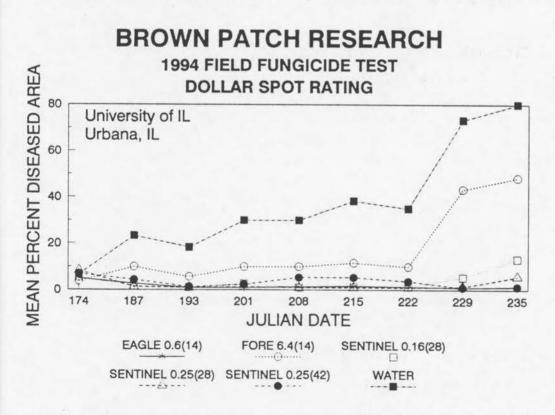
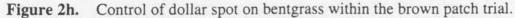




Figure 2g. Control of dollar spot on bentgrass within the brown patch trial.

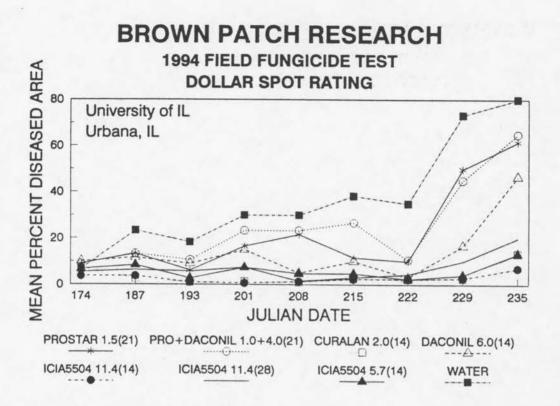


Figure 2i. Control of dollar spot on bentgrass within the brown patch trial.

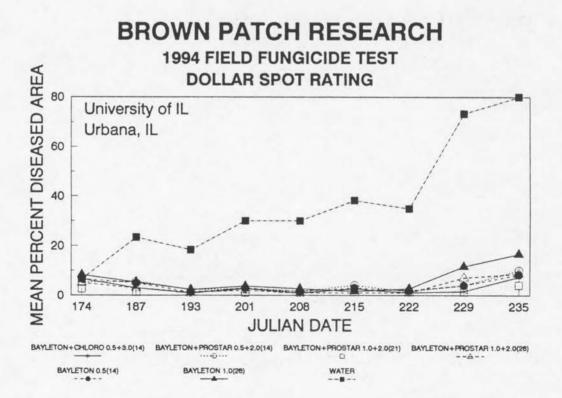
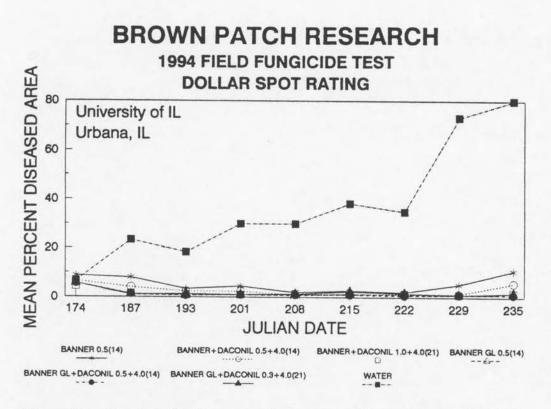
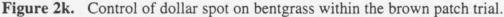




Figure 2j. Control of dollar spot on bentgrass within the brown patch trial.

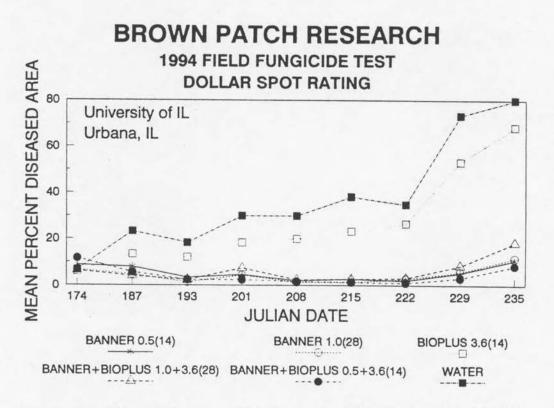


Figure 21. Control of dollar spot on bentgrass within the brown patch trial.

Fungicide Trials For The Control Of Summer Patch On Bluegrass

Research Protocol:	Bluegrass Summer Patch Fungicide Trial
Location:	Ornamental Horticulture Research Center, Urbana, IL
Site Preparation:	pathogen inoculation - natural inoculum and artificial inoculum; fertilization - 0.91 kg N/M/yr; pesticides - applied as need.
Plot Maintenance:	mowing height - 4.76 cm twice a week; irrigation - natural rainfall plus 2.5 cm/week if needed; topdressing - none.
1994	initial fungicide treatments - applied on Julian day 145 (May 25, 1994); additional applications - applied at a 14, 21 and 28 day intervals; last application on Julian day 200 (July 19, 1994). applied in 20.8 L water/M; plot size- 3 ft x 4 ft.
Experimental Design:	RCB 4 replications.

Two summer patch research plots were established at the University of Illinois Turf Farm on May 19, 1994 to evaluate registered fungicides and test the efficacy of experimental chemicals. In 1993 an area (Plot 1) was established and inoculated with artificial inoculum. No disease developed in 1993. This same area was inoculated and used in Artificial inoculum was 1994. applied to the centers of each plot by placing Magnaporthe poae infested millet into two 6.35 cm core holes. The core holes were 7.5 cm deep and the inoculum was placed at a depth below the thatch layer. The plot that was artificially inoculated in 1994 developed no symptoms of summer patch and after several fungicide applications, the treatment program was discontinued.

The second treatment area (Plot 2) developed summer patch from a natural infestation of the

fungus. The data (Figures 3a-3d) and research protocol that is presented in this report refers to the summer patch area (Plot 2) which had a natural infestation.

Trt. No.	Manufacturer	Chemical Name	Rate oz cf/M	Rate cf/liter	Spray Interval (days)
1.	Zeneca	ICIA5504 50WG	0.4	0.91 g	14
2.	Zeneca	ICIA5504 50WG	0.4	0.91 g	21
3.	Zeneca	ICIA5504 50WG	0.4	0.91 g	28
4.	Zeneca	ICIA5504 50WG	0.2	0.45 g	14
5.	Zeneca	ICIA5504 50WG	0.2	0.45 g	21
6.	Rohm Haas	Eagle 40W	0.6	1.36 g	28 (2x)
7.	ISK	Fluazinam 500F	0.5	1.18 ml	14
8. 9.	ISK	Fluazinam 500F	1.0	2.4 ml	21
9.	ISK	ASC-67098 Z	3.6	8.15 g	21
10.	ISK	Fluazinam 75SDG	0.67	1.52 g	21
11.	DowElanco	Rubigan 50W	0.75	1.70 g	28 (3x)
12. 13.	Ciba	Banner 1.1E Water	4.0	9.5 ml	28

Table 4.	1994 Summer Patch Research Plot 1 - Artificial Inoculum (no disease
	development).

 Table 5. 1994 summer patch research plot 2 - natural infestation.

Trt. No.	Manufacturer	Chemical Name	<u>Rate</u> oz cf/M	Rate cf/liter	Spray Interval (days)
1.	Zeneca	ICIA5504 50WG	0.4	0.54 g	14
2.	Zeneca	ICIA5504 50WG	0.4	0.54 g	21
3.	Zeneca	ICIA5504 50WG	0.4	0.54 gg	28
4.	Zeneca	ICIA5504 50WG	0.2	0.27 g	14
5.	Zeneca	ICIA5504 50WG	0.2	0.27 g	21
6.	Rohm Haas	Eagle 40W	0.6	0.82 g	28 (2x)
7.	ISK	Fluazinam 500F	0.5	0.71 ml	14
8.	ISK	Fluazinam 500F	1.0	1.4 ml	21
9.	ISK	ASC-67098 Z	3.6	4.9 g	21
10.	ISK	Fluazinam 75SDG	0.67	0.91 g	21
11.	DowElanco	Rubigan 50W	0.75	1.02 g	28 (3x)
12.	Ciba	Banner 1.1E	4.0	5.7 ml	28
13.		Water			

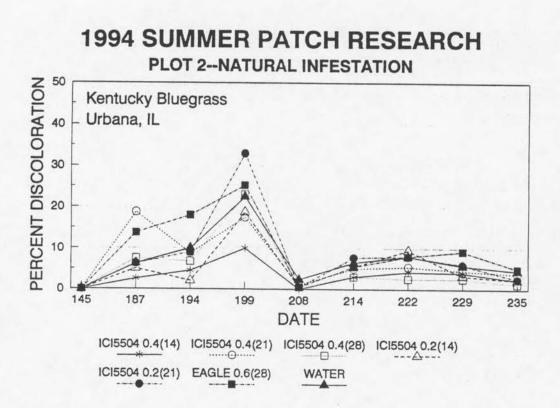


Figure 3a. Control of summer patch on bluegrass.

1994 SUMMER PATCH RESEARCH PLOT 2--NATURAL INFESTATION

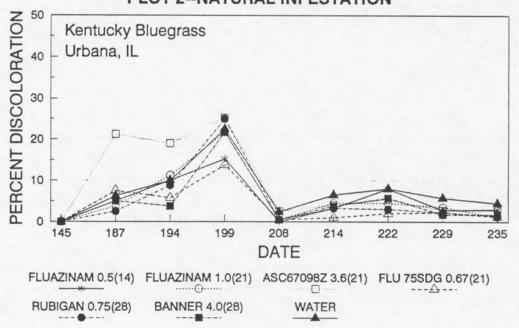
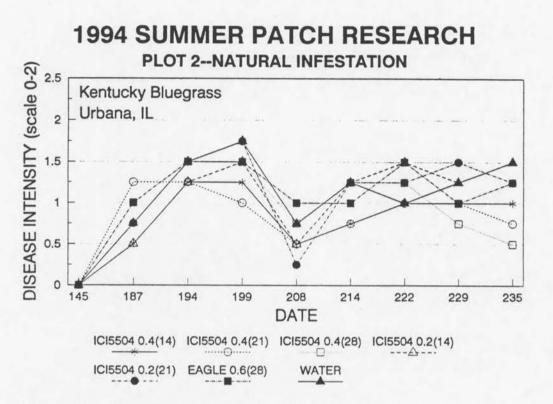
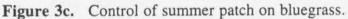




Figure 3b. Control of summer patch on bluegrass.

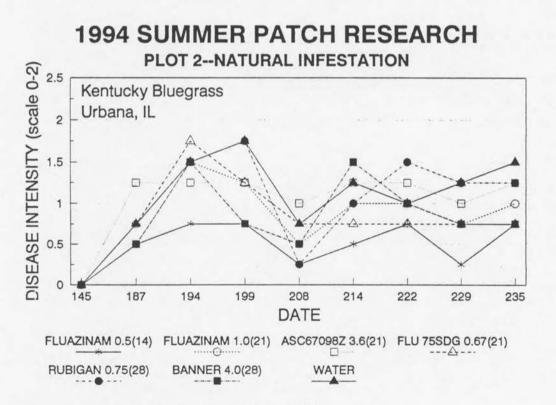


Figure 3d. Control of summer patch on bluegrass.

FUNGICIDE RESEARCH AT SOUTHERN ILLINOIS UNIVERSITY

Evaluation of Fungicides in 'Arid' Tall Fescue

Kenneth L. Diesburg

Research	
Protocol:	1994 Fungicide Trial
Location:	Horticulture Research Center,
	Carbondale, IL,
	soil - Hosmer clay loam, pH 6.5.
Site	three-year old turf;
Preparation:	allow drought stress when warm;
	irrigate frequently after drought stress.
Plot	fertilizer - 4 lb N/M/yr, SCU and Nitroform;
Maintenance:	herbicides - Banner preemergent applied April 14
	Trimec postemergent applied March 10;
	mowing height - 2.5 inches.
Methods:	CO ₂ backpack sprayer with 5' boom;
	spray volume - 150 gpa;
Experimental	RCB;
Design:	4 replications.

May was dry, and irrigation was withheld until after a rain that occurred on June 2. First application of treatments occured on May 21. Assigned schedules were followed thereafter. Temperatures never dropped below 42°F after May 21. Day temperatures reached into the 80s for the first time on May 22. Treatments were applied, therefore, well in advance of disease symptoms. Turf quality ratings were taken on June 3 when the first indications of disease were observed. There were no significant differences among treatments at that time. regarding turf quality. Disease severity within the experiment decreased after July 16, and

there were no further differences to be recorded. Final treatment occured on August 12.

	Interval	Rate		Percent Dis	sease
Treatment	wk	oz/1000	7/4	7/16	Average
EXP10622A 80WG	2	4.00	38	41	39
UTC			30	46	38
UTC			23	46	34
Sentinel 40WG	6	0.25	22	44	33
EXP10361A 60WG	2 3	5.00	13	38	25
Curalan		2.30	24	22	23
Sentinel 40WG	6	0.33	17	26	22
EXP10452A 50WG	2	2.00	10	18	14
Daconil 825 SDG	2	3.80	13	12	13
Daconil 2787	2	6.00	6	17	12
Daconil 2787 4.17F	2	6.00	10	10	10
Sentinel 40WG	4	0.25	9	10	10
ProStar 50WP	3	1.50	12	7	10
Fluazinam 500F	3	1.00	8	6	7
Alliete/Fore	2	2/4	8 5 5	8	7
EXP10622A/Dithane	2	4/8		6 8 8 7	6
ProStar/Daconil	3	1/4	5		6
Chipco26019 WDG	2	2.00	7	5	6
EXP10452A 50WG	2 2 2 4 3 2 2 3 2 2 3 2 2	1.50	5	6	6
Sentinel 40WG	4	0.33	4	6	5 5
Alliet/Fore	2	4/8	4	6	
EXP10621A 60WG	2	8.00	6	4	5
LSD 0.05			17	21	15

Table 1. Percent brown patch in Arid tall fescue at Carbondale, Illinois 1994.

APPENDIX A ABBREVIATIONS

A	Acre.
ai	Active ingredients.
cf	Commercial formulation or formulated product.
cm	Centimeters.
CRD	Completely randomized design.
cv	Cultivar.
DAT	Days after treatment.
ft	Feet.
gpa	Gallons per acre.
K	Potassium.
lbs ai/A	Pounds of active ingredient per acre.
lbs cf/A	Pounds of formulated product per acre.
LSD	Least significant difference.
Μ	1000 square feet.
N	Nitrogen.
ns	Not significant.
NTEP	National Turfgrass Evaluation Program.
0 Z	Ounce(s).
Р	Phosphorous.
pgr(s)	Plant growth retardant(s).
pt	Pint(s).
RCB	Randomized complete block.
RCU	Resin coated urea.
SCU	Sulfur coated urea.
UF	Urea formaldehyde.
WAT	Weeks after treatment.
yr	Year.

APPENDIX B WEATHER INFORMATION FOR CHAMPAIGN, IL

	Champai		Tontor		al Clim			January 1994					
Water Su					ois State	And in case of the local division of the loc	the second s			Summar		D 2	
Dete		emperati		Precip		ow ¹	Weather		ind	Sky		Days ²	
Date	Max.	Min.	Mean		Inches		Types ³	Dir.		Cover ⁴	Heat	Cool	
01/01/94	42	31	37	0.03	0.0	0	R-	S	13.8	CLDY	28	0	
01/02/94	33	30	32	0.00	0.0	0	F	E	3.7	CLDY	33	0	
01/03/94	31	28	30	0.00	0.0	0	SW-	NE	7.4	CLDY	35	0	
01/04/94	32	22	27	0.00	0.0	0	SW-	N	10.9	CLDY	38	0	
01/05/94	29	20	25	0.00	0.0	0		SE	9.4	CLDY	40	0	
01/06/94	38	28	33	0.00	0.0	0		SE	6.1	CLDY	32	0	
01/07/94	28	2	15	0.00	0.0	0	SW-	NW	10.6	PC	50	0	
01/08/94	19	1	10	0.00	0.0	0		W	8.9	CLR	55	0	
01/09/94	27	4	16	0.00	0.0	0		SE	4.6	CLR	49	0	
01/10/94	35	21	28	0.10	1.0	0	S,SW-,L-	SE	11.0	CLDY	37	0	
01/11/94	35	32	34	0.00	0.0	1		NE	4.3	CLDY	31	0	
01/12/94	35	30	33	0.00	0.0	Т	L-,F	W	5.7	CLDY	32	0	
01/13/94	30	8	19	0.02	0.3	Т	SW-	NW	7.5	CLDY	46	0	
01/14/94	8	-6	1	0.00	0.0	Т		NW	10.5	CLDY	64	0	
01/15/94	-5	-14	-10	0.00	0.0	Т		NW	7.9	CLR	75	0	
01/16/94	14	-11	2	0.22	3.0	Т	S	SE	10.3	CLDY	63	0	
01/17/94	14	-10	2	0.00	0.0	3	SW-	NW	10.0	PC	63	0	
01/18/94	-10	-21	-16	0.00	0.0	3		W	9.5	CLR	81	0	
01/19/94	2	-25	-12	0.03	1.0	3	S	SE	7.1	CLDY	77	0	
01/20/94	11	-10	1	0.00	0.0	4	SW-	SE	2.7	CLR	64	0	
01/21/94	17	-16	1	0.00	0.0	4		SW	5.9	PC	64	0	
01/22/94	32	5	19	0.00	0.0	4	L-,F	S	5.5	CLDY	46	0	
01/23/94	37	29	33	0.00	0.0	4	L-,F	SW	9.6	CLDY	32	0	
01/24/94	41	34	38	0.00	0.0	Т	F	SW	4.9	CLDY	27	0	
01/25/94	40	30	35	0.45	0.0	Т	R,R-,L,F	NE	5.0	CLDY	30	0	
01/26/94	30	24	27	0.00	0.0	0	ZL	E	10.2	CLDY	38	0	
01/27/94	49	24	37	0.53	0.0	0	ZL,ZR, R- ,R,L,F	E	6.5	CLDY	28	0	
01/28/94	36	25	31	0.31	0.0	0	R,R-,L, IP,SW-	W	12.7	CLDY	34	0	
01/29/94	32	23	28	0.03	0.5	Т	SW-	w	4.0	CLDY	37	0	
01/30/94	30	17	24	0.12	1.8	0	S	SE		CLDY	41	0	
01/31/94	17	-4	7	0.00	0.0	2		WNW	6.8	PC	58	0	
Total/													
Average ⁵	26.1	11.3	18.7	1.84	7.6			w	7.8	1	1,428	0	
Departure from	-5.6	-4.7	-5.2	+0.01	-0.5			w	-0.5		+145	+0	
Average													

¹Snow depth at 7 AM LST.

³WEATHER TYPES: F=Fog; T=Thunderstorm; IP=Ice Pellets; A=Hail; R=Rain; S=Snow; Z=FreezingPrecip; D=Dust; H=Haze; BS=BlowingSnow; RW=Rain Showers; SW=Snow Showers; L=Drizzle; INTENSITIES: +heavy; -light; absence of symbol indicates moderate, T = Trace.

⁴Sky 7 AM - 7PM LST. Other data midnight - midnight.

²DEGREE DAYS: Heat and Cool base=65F; Heating/dd July-June. Cooling/dd Jan.-Dec.

104	ł.				

	and an owner where the second s	scarenv	Center	Illin			cal Data Survey	February 1994 Summary					
	-												
Data	Max.	emperati		Precip		ow ¹	Weather		find	Sky	Degree		
Date		Min.	Mean	Concernant and some of the local division of	Inches	the second se	Types ³	Dir.	Speed		Heat	Cool	
02/01/94	16	-7	5	0.00	0.0	2		SW	4.0	CLR	60	0	
02/02/94	29	14	22	0.00	0.0	2	SW-	SW	11.7	CLDY	43	0	
02/03/94	26	5	16	0.00	0.0	2		SW	7.4	PC	49	0	
02/04/94	27	11	19	0.00	0.0	2		NNE	4.8	CLDY	46	0	
02/05/94	36	11	24	0.00	0.0	2		W	4.8	PC	41	0	
02/06/94	43	16	30	0.00	0.0	1		S	8.2	PC	35	0	
02/07/94	24	16	20	0.11	0.5	Т	IP,SG,ZL, ZR	NE	9.7	CLDY	45	0	
02/08/94	18	12	15	0.09	0.1	Т	ZL,ZR,IP, S-	NE	8.9	CLDY	50	0	
02/09/94	15	8	12	0.00	0.0	Т		N	8.5	CLDY	53	0	
02/10/94	23	6	15	0.00	0.0	Т		NE	4.6	PC	50	0	
02/11/94	28	11	20	0.00	0.0	Т		NE	7.0	PC	45	0	
02/12/94	33	17	25	0.00	0.0	Т	ZL	Е	8.2	CLDY	40	0	
02/13/94	35	17	26	0.00	0.0	Т		NW	8.7	CLR	39	0	
02/14/94	47	24	36	0.00	0.0	0		SW	11.4	CLR	29	0	
02/15/94	42	28	35	0.00	0.0	0		NW	6.3	CLR	30	0	
02/16/94	45	23	34	0.00	0.0	0	L-,F	SSE	5.7	PC	31	0	
02/17/94	56	32	44	0.00	0.0	0		SSE	6.2	PC	21	0	
02/18/94	59	32	46	0.00	0.0	0		SE	7.9	PC	19	0	
02/19/94	63	46	55	0.01	0.0	0	R-,L	S	14.9	PC	10	0	
02/20/94	56	35	46	0.05	0.0	0	R-,L	NW	9.4	CLDY	19	0	
02/21/94	38	28	33	0.00	0.0	0		Ν	6.5	CLDY	32	0	
02/22/94	32	28	30	0.14	0.0	0	ZL,ZR,IP, SW-	NE	11.1	CLDY	35	0	
02/23/94	30	20	25	0.26	1.0	Т	S,ZL,IP	w	4.9	CLDY	40	0	
02/24/94	21	12	17	0.06	0.4	1	SW-,S-	W	5.4	PC	48	0	
02/25/94	31	10	21	0.20	3.3	1	SW	W	13.0	CLDY	44	0	
02/26/94	21	7	14	0.00	0.0	3		N	6.9	CLR	51	0	
02/27/94	25	6	16	0.00	0.0	3		ESE	3.8	PC	49	0	
02/28/94	34	18	26	0.06	0.6	3	S	E	3.2	CLDY	39	0	
Total/													
Average ⁵	34.0	17.4	25.7	0.98	5.9			NE	7.6		1,093	0	
Departure from Average	-2.3	-2.9	-2.6	-0.99	-1.1			S	-0.4		+51	+0	

¹Snow depth at 7 AM LST. ²DEGREE DAYS: Heat and Cool base=65F; Heating/dd July-June. Cooling/dd Jan.-Dec.

³WEATHER TYPES: F=Fog; T=Thunderstorm; IP=Ice Pellets; A=Hail; R=Rain; S=Snow; Z=Freezing Precip; D=Dust; H=Haze; BS=BlowingSnow; RW=Rain Showers; SW=Sn INTENSITIES: +heavy; -light; absence of symbol indicates moderate, T = Trace. SW=Snow Showers; L=Drizzle;

Water Si	Champaign, IL Water Survey Research Center					atologic e Water		March 1994 Summary						
Trater of			conter								<u>y</u>			
	T	emperati	ure	Precip	Sn	ow ¹	Weather	W	ind	Sky	Degree	e Days ²		
Date	Max.	Min.	Mean	Inches	Inches	Depth	Types ³	Dir.	Speed	Cover ⁴	Heat	Cool		
03/01/94	34	28	31	0.15	1.5	5	S	NE	7.8	CLDY	34	0		
03/02/94	34	20	27	0.00	0.0	4		N	11.6	CLR	38	0		
03/03/94	46	17	32	0.00	0.0	4	F	W	6.8	CLR	33	0		
03/04/94	48	33	41	0.00	0.0	3	F	NW	7.9	CLR	24	0		
03/05/94	57	28	43	0.00	0.0	Т	F	S	5.1	CLR	22	0		
03/06/94	62	40	51	0.00	0.0	Т	R-,L,F	N	6.1	CLDY	14	0		
03/07/94	46	36	41	0.48	0.0	0	TRW-,	NW	6.6	CLDY	24	0		
					100		R,L				1000			
03/08/94	36	27	32	0.00	0.0	0		NW	6.6	CLDY	33	0		
03/09/94	34	25	30	0.00	0.0	0	1.11	N	8.2	PC	35	0		
03/10/94	42	22	32	0.00	0.0	0	SW-	NW	4.6	PC	33	0		
03/11/94	46	24	35	0.00	0.0	0	F	SE	3.4	CLR	30	0		
03/12/94	61	29	45	0.00	0.0	0		SW	9.6	CLDY	20	0		
03/13/94	52	33	43	0.09	0.0	0	R,R-,L	NW	6.4	CLDY	22	0		
03/14/94	54	27	41	0.00	0.0	0	RW-,F	SSW	8.2	PC	24	0		
03/15/94	53	30	42	0.00	0.0	0	RW-	NW	11.0	PC	23	0		
03/16/94	39	25	32	0.00	0.0	0		N	8.4	PC	33	0		
03/17/94	39	21	30	0.00	0.0	0		SE	10.3	CLDY	35	0		
03/18/94	54	28	41	0.00	0.0	0		NW	10.3	CLR	24	0		
03/19/94	48	24	36	0.00	0.0	0	1.1.1.1	S	4.7	PC	29	0		
03/20/94	63	40	52	0.00	0.0	0		SE	9.3	CLDY	13	0		
03/21/94	58	30	44	0.00	0.0	0	TRW-,F	NW	9.1	CLDY	21	0		
03/22/94	71	28	50	0.00	0.0	0	SW-	SW	14.8	PC	15	0		
03/23/94	77	37	57	0.00	0.0	0	TRW-	S	15.9	PC	8	0		
03/24/94	62	34	48	0.00	0.0	0		NW	10.7	PC	17	0		
03/25/94	49	29	39	0.00	0.0	0		N	5.4	PC	26	0		
03/26/94	46	38	42	0.35	0.0	0	R,L	SE	8.1	CLDY	23	0		
03/27/94	47	37	42	0.03	0.0	0	R,L	NW	5.1	CLDY	23	0		
03/28/94	46	31	39	0.00	0.0	0	R-,SW-, IP-	W	6.8	CLDY	26	0		
03/29/94	45	30	38	0.00	0.0	0	п.	NW	6.2	PC	27	0		
03/30/94	47	26	37	0.00	0.0	0		W	5.1	PC	28	0		
03/31/94	52	26	39	0.00	0.0	0		W	6.5	PC	26	0		
Total/														
Average ⁵	49.9	29.1	39.5	1.10	1.5		-	NW	8.0		783	0		
Departure from Average	+1.1	-2.0	-0.4	-2.20	-2.6			s	-0.6		-2	-1		

²DEGREE DAYS: Heat and Cool base=65F; Heating/dd July-June. Cooling/dd Jan.-Dec.

³WEATHER TYPES: F=Fog; T=Thunderstorm; IP=Ice Pellets; A=Hail; R=Rain; S=Snow; Z=Freezing Precip; D=Dust; H=Haze; BS=BlowingSnow; RW=Rain Showers; SW=Snow Showers; L=Drizzle; INTENSITIES: +heavy; -light; absence of symbol indicates moderate, T = Trace. ⁴Sky 7 AM - 7PM LST. Other data midnight - midnight.

Water Su	Champai Irvev Re		Center			atologic e Water				April 199 Summar		1. 1.
Date		emperati Min.		Precip Inches	Sn	ow ¹ Depth	Weather Types ³	W. Dir.	/ind Speed	Sky		e Days ²
in the second							Types	_				Cool
04/01/94	69	32	51	0.00	0.0	0	nr	SW	8.5	CLR	14	0
04/02/94 04/03/94	72	37	55	0.32	0.0	0	R,L	W	9.0	CLDY	10	0
	49	34	42	0.23	0.0	0	R,L	N	7.5	PC	23	0
04/04/94	57	28	43	0.00	0.0	0	R.L.ZR,IP,S	S	12.4	PC	22	0
04/05/94	51	30	41	0.37	0.8	0		N	11.2	CLDY	24	0
04/06/94	34	22	28	0.14	1.7	1	S F	N	7.0	CLDY	37	0
04/07/94	45	16	31	0.00	0.0	2	F	SE	2.1	PC	34	0
04/08/94	62	31	47	0.00	0.0	0		S	11.5	CLDY	18	0
04/09/94	62	44	53	0.61	0.0	0	R,R-,L	SW	6.7	CLDY	12	0
04/10/94	56	42	49	0.41	0.0	0	R,L	NE	9.0	CLDY	16	0
04/11/94	44	41	43	2.96	0.0	0	TRW+,TR W,R,L	NE	6.9	CLDY	22	0
04/12/94	69	44	57	0.92	0.0	0	TRW,R-, RW-,L	W	10.2	CLDY	8	0
04/13/94	48	38	43	0.00	0.0	0	L	SW	9.6	CLDY	22	0
04/14/94	77	38	58	0.00	0.0	0	L,F	S	10.2	CLR	7	0
04/15/94	64	45	55	0.58	0.0	0	TRW+,TR W-,RW-	W	13.8	PC	10	0
04/16/94	64	41	53	0.00	0.0	0		W	11.2	CLR	12	0
04/17/94	69	42	56	0.00	0.0	0		W	7.8	CLR	9	0
04/18/94	80	50	65	0.00	0.0	0	L	SW	12.2	CLR	0	0
04/19/94	71	54	63	0.00	0.0	0	~	NW	8.4	CLR	2	0
04/20/94	67	46	57	0.08	0.0	0	R	N	5.8	CLR	8	0
04/21/94	54	42	48	0.02	0.0	0	R-,L	NE	4.5	CLDY	17	0
04/22/94	62	38	50	0.00	0.0	0		NE	6.5	CLR	15	0
04/23/94	68	38	53	0.00	0.0	0		S	7.4	CLR	12	0
04/24/94	81	47	64	0.00	0.0	0		SW	11.7	CLR	1	0
04/25/94	82	58	70	0.00	0.0	0	TRW-,F	S	14.4	PC	Ô	5
04/26/94	83	62	73	0.83	0.0	0	TRW+,L,A	S	17.4	CLDY	0	8
04/27/94	67	44	56	0.03	0.0	0	RW	NW	7.3	CLDY	9	0
04/28/94	66	43	55	1.10	0.0	0	TRW,R,L	NE	10.2	CLDY	10	0
04/29/94	55	43	49	0.00	0.0	0		W	6.1	CLDY	16	0
04/30/94	45	36	41	0.66	0.0	0	R,R-,L	NE	7.8	CLDY	24	0
Total/	45		71	0.00	0.0	0	IN,IN-,L	112	7.0	CLDI	27	0
Average ⁵	62.4	40.2	51.3	9.27	2.5	1.44		SW	9.1		414	13
Departure from Average	+0.0	-1.2	-0.6	+5.33	+1.5			s	+0.6		+3	+3

²DEGREE DAYS: Heat and Cool base=65F; Heating/dd July-June. Cooling/dd Jan.-Dec.

³WEATHER TYPES: F=Fog: T=Thunderstorm; IP=Ice Pellets; A=Hail; R=Rain; S=Snow; Z=Freezing Precip; D=Dust; H=Haze; BS=BlowingSnow; RW=Rain Showers; SW=Snow Showers; L=Drizzle; INTENSITIES: +heavy; -light; absence of symbol indicates moderate, T = Trace.

⁴Sky 7 AM - 7PM LST. Other data midnight - midnight.

(Water S		aign, IL	Center				gical Data er Survey			May 199 Summar		
Trater o	ur ve y Iv	coocar en	Center		1015 512	ne wat					<u>y</u>	
	I	emperat	ure	Prec ip	Sno	ow ¹	Weather	W	Vind	Sky	Degree	e Days ²
Date	Max.	Min.	Mean	Inches	Inches	Depth	Types ³	Dir.	Speed	and the second se	Heat	Cool
05/01/94	53	36	45	0.00	0.0	0		NW	5.2	CLDY	20	0
05/02/94	59	35	47	0.00	0.0	0	L	E	2.7	PC	18	0
05/03/94	64	42	53	0.00	0.0	0		E	4.0	CLDY	12	0
05/04/94	67	40	54	0.00	0.0	0	F	w	2.6	PC	11	0
05/05/94	75	50	63	0.20	0.0	0	R,L,F	W	7.0	PC	2	0
05/06/94	51	44	48	0.75	0.0	0	R,L	NE	4.4	CLDY	17	0
05/07/94	53	40	47	0.71	0.0	0	TRW+,R,L	N	7.4	CLDY	18	0
05/08/94	66	38	52	0.00	0.0	0		SW	5.0	PC	13	0
05/09/94	72	46	59	0.00	0.0	0		NW	5.6	PC	6	0
05/10/94	72	44	58	0.00	0.0	0		w	4.3	CLR	7	0
05/11/94	80	54	67	0.47	0.0	0	TRW+,	SW	11.9	CLDY	0	2
							RW+,R,L					
05/12/94	70	47	59	0.00	0.0	0		NE	2.7	CLR	6	0
05/13/94	73	44	59	0.00	0.0	0		SE	4.1	PC	6	0
05/14/94	69	51	60	0.15	0.0	0	RW,R,L,F	SE	6.5	CLDY	5	0
05/15/94	76	54	65	0.00	0.0	0		NW	6.5	CLR	0	0
05/16/94	71	46	59	0.00	0.0	0		N	6.6	CLR	6	0
05/17/94	71	41	56	0.00	0.0	0		NE	7.5	CLR	9	0
05/18/94	73	42	58	0.00	0.0	0		NE	8.0	CLR	7	0
05/19/94	74	45	60	0.00	0.0	0		NE	5.4	CLR	5	0
05/20/94	78	47	63	0.00	0.0	0		NE	2.4	CLR	2	0
05/21/94	83	50	67	0.00	0.0	0		NW	2.6	CLR	0	2
05/22/94	86	60	73	0.00	0.0	0		w	4.3	CLR	0	8
05/23/94	88	60	74	0.00	0.0	0		W	4.5	PC	0	9
05/24/94	88	62	75	1.54	0.0	0	TRW+,A,R W+,R,L	W	7.7	CLDY	0	10
05/25/94	79	59	69	0.10	0.0	0	TRW,R,L,F	W	6.9	PC	0	4
05/26/94	64	44	54	0.00	0.0	0	L	N	6.5	CLDY	11	0
05/27/94	68	41	55	0.00	0.0	0		Ν	4.1	CLR	10	0
05/28/94	76	44	60	0.00	0.0	0		SW	4.4	CLR	5	0
05/29/94	80	49	65	0.00	0.0	0		S	7.0	CLR	0	0
05/30/94	85	60	73	0.09	0.0	0	RW	S	7.3	PC	0	8
05/31/94	85	65	75	0.00	0.0	0	F	W	7.8	PC	0	10
Total/												
Average ⁵	72.5	47.7	60.1	4.01	0.0		A	W	5.6		196	53
Departure												
from	-1.2	-4.0	-2.6	+0.04	+0.0			S	-1.3		+46	-18
Average	_				1	-					_	

²DEGREE DAYS: Heat and Cool base=65F; Heating/dd July-June. Cooling/dd Jan.-Dec.

³WEATHER TYPES: F=Fog; T=Thunderstorm; IP=Ice Pellets; A=Hail; R=Rain; S=Snow; Z=Freezing Precip; D=Dust; H=Haze; BS=BlowingSnow; RW=Rain Showers; SW=Snow Showers; L=Drizzle; INTENSITIES: +heavy; -light; absence of symbol indicates moderate, T = Trace.

Water St	Champa		Center			-	cal Data r Survey			lune 199 Summar		
- uter b	ur rey re	escuren	Conter		1013 014	te trater					<u>,</u>	
1000	Te	emperati	ure	Precip	Sn	ow ¹	Weather	w	ind	Sky	Degree	e Davs ²
Date	Max.	Min.	Mean	Inches	Inches	Depth	Types ³	Dir.	Speed	Cover ⁴	Heat	Cool
06/01/94	80	56	68	0.00	0.0	0	L	NW	4.9	PC	0	3
06/02/94	66	51	59	0.10	0.0	0	R-,L	NE	3.3	PC	6	0
06/03/94	77	53	65	0.00	0.0	0		NE	2.7	PC	0	0
06/04/94	84	55	70	0.00	0.0	0		NE	2.3	CLR	0	5
06/05/94	86	56	71	0.00	0.0	0	T,H	SW	6.7	PC	0	6
06/06/94	92	66	79	0.00	0.0	0		NW	3.8	CLR	0	14
06/07/94	93	64	79	0.00	0.0	0	H	NE	4.2	PC	0	14
06/08/94	64	55	60	0.37	0.0	0	TRW,RW-,	NE	7.7	CLDY	5	0
							L					
06/09/94	74	57	66	0.00	0.0	0		NE	4.3	CLDY	0	1
06/10/94	80	58	69	0.00	0.0	0		NNW	3.8	PC	0	4
06/11/94	81	56	69	0.00	0.0	0	1.2	W	4.1	PC	0	4
06/12/94	87	62	75	0.16	0.0	0	TRW,RW, RW-,L	W	5.7	CLDY	0	10
06/13/94	89	68	79	0.00	0.0	0	F	SSW	11.0	CLDY	0	14
06/14/94	93	72	83	0.00	0.0	0	F	S	9.1	CLDY	Ő	18
06/15/94	94	70	82	0.00	0.0	0		SSW	7.2	PC	0	17
06/16/94	94	70	82	0.00	0.0	0	F,H	SW	2.8	PC	0	17
06/17/94	94	69	82	0.00	0.0	0	F	E	1.6	CLR	0	17
06/18/94	96	74	85	0.00	0.0	0	<u> </u>	NE	1.9	PC	0	20
06/19/94	96	76	86	0.22	0.0	0	TRW	NE	3.0	CLDY	0	21
06/20/94	93	73	83	0.00	0.0	0	F,H	NNE	3.4	PC	0	18
06/21/94	92	73	83	0.00	0.0	Ő	- ,	NW	4.5	CLDY	Ő	18
06/22/94	90	66	78	0.00	0.0	0		NE	2.2	PC	0	13
06/23/94	92	70	81	0.71	0.0	0	F,TRW+, R,RW-	S	7.1	CLDY	0	16
06/24/94	74	61	68	0.11	0.0	0	R,L	N	7.5	CLDY	0	3
06/25/94	83	56	70	0.00	0.0	0	TRW-	W	5.0	CLDY	0	5
06/26/94	76	64	70	0.21	0.0	0	TRW, TRW-	N	3.9	CLDY	0	5
06/27/94	81	62	72	0.00	0.0	0	F	N	3.1	PC	0	7
06/28/94	88	67	78	0.00	0.0	0		W	6.8	PC	0	13
06/29/94	81	64	73	0.11	0.0	0	R	W	7.5	PC	0	8
06/30/94	84	62	73	0.00	0.0	0		S	2.9	PC	0	8
Total/												
Average ⁵	85.1	63.5	74.3	1.99	0.0			NE	4.8		11	299
Departure from Average	+2.2	+2.7	+2.4	-2.08	+0.0			SW	-1.2		-5	+85

¹Snow depth at 7 AM LST. ²DEGREE DAYS: Heat and Cool base=65F; Heating/dd July-June. Cooling/dd Jan.-Dec.

³WEATHER TYPES: F=Fog; T=Thunderstorm; IP=Ice Pellets; A=Hail; R=Rain; S=Snow; Z=Freezing Precip; D=Dust; H=Haze; BS=BlowingSnow; RW=Rain Showers; SW=Sr INTENSITIES: +heavy; -light; absence of symbol indicates moderate, T = Trace. RW=Rain Showers; SW=Snow Showers; L=Drizzle;

Water St	Champa urvey R		Center	1000			cal Data r Survey			uly 199 Summar		
	Te	emperati	<u>ire</u>	Precip	Sne	<u>ow</u> 1	Weather		ind	Sky	Degree	e Days ²
Date	Max.	Min.	Mean	Inches	Inches	and some state of the local division of the	Types ³	Dir.	the second s	Cover ⁴	Heat	Cool
07/01/94	89	63	76	0.00	0.0	0		SW	5.2	CLR	0	11
07/02/94	81	65	73	0.02	0.0	0	R	NE	5.3	CLDY	0	8
07/03/94	86	63	75	0.14	0.0	0	R	SE	4.3	PC	0	10
07/04/94	91	70	81	0.00	0.0	0		S	8.2	CLR	0	16
07/05/94	94	72	83	0.00	0.0	0	Sec. 1.	SW	5.7	PC	0	18
07/06/94	93	69	81	0.00	0.0	0	TRW-,F	S	4.1	CLDY	0	16
07/07/94	90	69	80	0.00	0.0	0	F	S	6.1	CLDY	0	15
07/08/94	85	60	73	0.00	0.0	0	R-,F	S	7.8	CLDY	0	8
07/09/94	81	59	70	0.00	0.0	0		W	7.3	CLR	0	5
07/10/94	79	57	68	0.00	0.0	0		NE	3.5	PC	0	5 3
07/11/94	84	55	70	0.00	0.0	0		S	2.8	CLR	0	5
07/12/94	89	62	76	0.00	0.0	0		S	3.3	CLR	0	11
07/13/94	88	64	76	0.05	0.0	0	TRW,F	SE	3.0	CLDY	0	11
07/14/94	90	70	80	0.00	0.0	0	F	SW	4.6	CLDY	0	15
07/15/94	83	62	73	0.00	0.0	0		NNW	3.5	PC	0	8
07/16/94	85	60	73	0.03	0.0	0	RW	SE	3.0	PC	0	8
07/17/94	84	65	75	0.00	0.0	0	R-,F	W	4.7	CLDY	0	10
07/18/94	88	61	75	0.00	0.0	0	F	SE	2.9	CLR	0	10
07/19/94	89	66	78	0.07	0.0	0	TRW-,	S	5.8	PC	0	13
							TRW,F					
07/20/94	94	70	82	0.91	0.0	0	TRW+,TR W,R,L,F	SW	6.4	CLDY	0	17
07/21/94	83	68	76	0.05	0.0	0	RW-,F	SW	5.3	CLDY	0	11
07/22/94	82	66	74	0.00	0.0	0		W	6.8	PC	0	9
07/23/94	85	64	75	0.00	0.0	0		W	4.4	PC	0	10
07/24/94	85	64	75	0.00	0.0	0	TRW-	W	4.7	CLDY	0	10
07/25/94	82	62	72	0.01	0.0	0	R-,L	W	4.1	PC	0	7
07/26/94	79	63	71	0.00	0.0	0		NW	4.0	PC	0	6
07/27/94	76	61	69	0.00	0.0	0	RW-,L	N	4.2	PC	0	4
07/28/94	80	58	69	0.00	0.0	0		N	4.6	CLR	0	4
07/29/94	80	54	67	0.00	0.0	0		N	2.1	PC	0	2
07/30/94	83	56	70	0.00	0.0	0		S	2.5	PC	0	5
07/31/94	85	58	72	0.00	0.0	0		S	4.8	CLR	0	7
Total/												
Average ⁵	85.3	63.1	74.2	1.28	0.0			S	4.7		0	293
Departure from Average	+0.0	-1.7	-0.9	-3.20	+0.0			sw	-0.2		-2	-12

²DEGREE DAYS: Heat and Cool base=65F; Heating/dd July-June. Cooling/dd Jan.-Dec.

 ³WEATHER TYPES: F=Fog; T=Thunderstorm; IP=Ice Pellets; A=Hail; R=Rain; S=Snow; Z=Freezing Precip; D=Dust; H=Haze; BS=BlowingSnow; RW=Rain Showers; SW=Snow Showers; L=Drizzle; INTENSITIES: +heavy; -light; absence of symbol indicates moderate, T = Trace.
 ⁴Sky 7 AM - 7PM LST. Other data midnight - midnight.

Water S	Champa		Center				cal Data r Survey			ugust 19 Summar		
Water 5		emperati		Precip	Sno		Weather	u	Tind	Sky	Degree	Dave
Date	Max.	Min.	Mean		Inches		Types ³	Dir.	Speed	Cover ⁴	Heat	Cool
08/01/94		58	73	0.00	0.0	0	F	SW	4.6	PC	0	8
08/02/94	86	67	77	0.11	0.0	0	TRW,L	E	2.4	CLDY	0	12
08/03/94	90	62	76	0.32	0.0	0	TRW,F	SW	4.2	CLDY	0	11
08/04/94	81	62	72	0.02	0.0	0	RW-,F	W	7.4	CLDY	0	7
08/05/94	72	53	63	0.00	0.0	0		NE	6.9	CLR	2	0
08/06/94	73	50	62	0.00	0.0	0		SE	3.1	PC	3	0
08/07/94	81	52	67	0.00	0.0	0		S	3.1	PC	0	2
08/08/94	90	61	76	0.17	0.0	0	TRW+,TR W,A,F	SW	4.7	CLDY	0	11
08/09/94	75	55	65	0.00	0.0	0	10.00	NE	5.7	PC	0	0
08/10/94	72	55	64	0.00	0.0	0		SE	3.8	CLDY	1	0
08/11/94	82	65	74	0.02	0.0	0	RW-,L,F	NW	5.8	CLDY	0	9
08/12/94	83	63	73	0.03	0.0	0	TRW-,L,F	S	3.1	CLDY	0	8
08/13/94	92	72	82	0.78	0.0	0	TRW+,TR W,R,F	SW	7.4	CLDY	0	17
08/14/94	74	56	65	0.00	0.0	0		N	5.2	CLR	0	0
08/15/94	76	55	66	0.00	0.0	0		N	1.5	CLR	0	1
08/16/94	80	56	68	0.00	0.0	0	F	SE	1.5	CLR	0	3
08/17/94	83	59	71	0.00	0.0	0	F	NE	1.7	CLR	0	6
08/18/94	85	60	73	0.00	0.0	0	F	S	2.4	PC	0	8
08/19/94	89	62	76	0.00	0.0	0	F	S	6.5	CLR	0	11
08/20/94	79	64	72	0.63	0.0	0	TRW,RW, R,L,F	W	4.7	CLDY	0	7
08/21/94	77	60	69	0.00	0.0	0		N	4.3	CLDY	0	4
08/22/94	79	56	68	0.00	0.0	0	F	SE	1.4	PC	0	3
08/23/94	81	59	70	0.00	0.0	0	F	S	3.4	PC	0	5
08/24/94	85	61	73	0.00	0.0	0	F	SW	4.7	PC	0	8
08/25/94	88	63	76	0.00	0.0	0	F	SW	4.3	PC	0	11
08/26/94	81	66	74	0.17	0.0	0	TRW,F	SW	3.9	CLDY	0	9
08/27/94	89	62	76	0.00	0.0	0	F	SW	5.1	CLR	0	11
08/28/94	85	60	73	0.53	0.0	0	TRW+, RW,R,L	SW	5.9	CLDY	0	8
08/29/94	80	53	67	0.00	0.0	0	F	N	1.4	PC	0	2
08/30/94	71	55	63	0.54	0.0	0	TRW,F	SSE	3.8	CLDY	2	0
08/31/94	71	59	65	0.33	0.0	0	TRW+, RW,F	N	4.7	CLDY	0	0
Total/ Average ⁵	81.2	59.4	70.3	3.65	0.0			sw	4.1		8	182
Departure from Average	-1.8	-3.0	-2.4	-0.37	+0.0			sw	-0.6		+1	-56

²DEGREE DAYS: Heat and Cool base=65F; Heating/dd July-June. Cooling/dd Jan.-Dec. ³WEATHER TYPES: F=Fog; T=Thunderstorm; IP=Ice Pellets; A=Hail; R=Rain; S=Snow; Z=Freezing Precip; D=Dust; H=Haze; BS=BlowingSnow; RW=Rain Showers; SW=Sr INTENSITIES: +heavy; -light; absence of symbol indicates moderate, T = Trace. RW=Rain Showers; SW=Snow Showers; L=Drizzle;

Champaign, IL Water Survey Research Center						cal Data r Survey	September 1994 Summary					
Data	Temperature			Precip	Snow ¹		Weather	Wind		Sky	Degree Days	
Date	Max.	Min.	Mean	Inches	Inches	Contraction of the Party of the	Types ³	Dir.	Speed		Heat	Cool
09/01/94	67	52	60	0.00	0.0	0		NE	4.6	CLDY	5	0
09/02/94	72	49	61	0.00	0.0	0	-	E	2.5	CLR	4	0
09/03/94	73	53	63	0.00	0.0	0		E	2.2	PC	2	0
09/04/94	66	52	59	0.16	0.0	0	R,RW,L	SE	4.0	CLDY	6	0
09/05/94	67	58	63	0.43	0.0	0	R,RW,L,F	SE	3.2	CLDY	2	0
09/06/94	77	58	68	0.00	0.0	0	F	NW	3.6	PC	0	3
09/07/94	77	53	65	0.00	0.0	0		W	1.9	CLR	0	0
09/08/94	81	49	65	0.00	0.0	0		SW	1.6	CLR	0	0
09/09/94	85	58	72	0.00	0.0	0	F	W	3.6	PC	0	7
09/10/94	86	58	72	0.00	0.0	0		W	2.9	CLR	0	7
09/11/94	87	60	74	0.00	0.0	0		WNW	1.8	CLR	0	9
09/12/94	86	61	74	0.00	0.0	0	F	SW	2.4	PC	0	9
09/13/94	87	60	74	0.00	0.0	0	F	SW	4.9	CLR	0	9
09/14/94	91	66	79	0.00	0.0	0		SW	5.9	CLR	0	14
09/15/94	88	62	75	0.00	0.0	0		SW	7.0	PC	0	10
09/16/94	87	65	76	0.11	0.0	0	TRW,RW	SW	6.9	CLDY	0	11
09/17/94	78	59	69	0.00	0.0	0		N	4.7	CLR	0	4
09/18/94	80	54	67	0.00	0.0	0		NE	2.7	CLR	0	2
09/19/94	83	52	68	0.00	0.0	0		WSW	1.7	CLR	0	3
09/20/94	83	52	68	0.00	0.0	0		SE	2.3	CLR	0	3
09/21/94	83	53	68	0.00	0.0	0		S	3.5	CLDY	0	3
09/22/94	73	52	63	0.32	0.0		R,RW,L,R-	S	6.9	CLDY	2	0
09/23/94	54	50	52	0.64	0.0	0	R-,RW-, R,L	NW	2.9	CLDY	13	0
09/24/94	70	48	59	0.08	0.0	0	R,RW,L,F	W	2.7	PC	6	0
09/25/94	68	52	60	0.14	0.0	0	TRW,R,L	SW	3.5	CLDY	5	0
09/26/94	63	52	58	1.33	0.0	0	TRW,R,R W,R-,L	S	2.9	CLDY	7	0
09/27/94	55	49	52	0.00	0.0	0	L	W	6.9	CLDY	13	0
09/28/94	68	47	58	0.00	0.0	0		WNW	5.7	CLR	7	0
09/29/94	77	44	61	0.00	0.0	0		NW	1.9	CLR	4	0
09/30/94	84	50	67	0.00	0.0	0		S	7.2	PC	0	2
Total/												
Average ⁵	76.5	54.3	65.4	3.21	0.0			W	3.8		76	96
Departure from Average	-1.2	-0.9	-1.1	-0.15	+0.0			sw	-1.3		-5	-21

⁴Sky 7 AM - 7PM LST. Other data midnight - midnight.

²DEGREE DAYS: Heat and Cool base=65F; Heating/dd July-June. Cooling/dd Jan.-Dec.

³WEATHER TYPES: F=Fog; T=Thunderstorm; IP=Ice Pellets; A=Hail; R=Rain; S=Snow; Z=Freezing Precip; D=Dust; H=Haze; BS=BlowingSnow; RW=Rain Showers; SW=Snow Showers; L=Drizzle; INTENSITIES: +heavy; -light; absence of symbol indicates moderate, T = Trace.

Champaign, IL Water Survey Research Center						cal Data r Survey	October 1994 Summary					
Date	<u>Temperature</u> Max. Min. Mean			Precip Snow ¹ Inches Inches Dept			Weather Types ³	Wind Dir. Speed		Sky Cover ⁴	Degree Days Heat Coo	
10/01/94	87	56	72	0.00	0.0	0		SW	8.2	PC	0	7
10/02/94	73	54	64	0.00	0.0	0		NW	5.9	CLDY	1	0
10/03/94	70	49	60	0.00	0.0	0		NE	4.8	CLDY	5	0
10/04/94	68	50	59	0.00	0.0	0		NE	3.6	CLDY	6	0
10/05/94	66	47	57	0.00	0.0	0		NE	2.0	CLDY	8	0
10/06/94	74	46	60	0.00	0.0	0		SE	6.9	CLDY	5	0
10/07/94	80	54	67	0.00	0.0	0		S	10.9	PC	0	2
10/08/94	68	50	59	1.32	0.0	0	R.RW.L	S	7.5	CLDY	6	0
10/09/94	62	42	52	0.00	0.0	0		NW	5.0	CLR	13	0
10/10/94	61	40	51	0.00	0.0	0		NE	4.3	CLR	14	0
10/11/94	65	38	52	0.00	0.0	0		ENE	3.6	CLR	13	0
10/12/94	70	40	55	0.00	0.0	0		Е	2.1	PC	10	0
10/13/94	67	49	58	0.00	0.0	0		NE	2.6	CLDY	7	0
10/14/94	63	55	59	0.00	0.0	0	L	NE	3.3	CLDY	6	0
10/15/94	72	52	62	0.00	0.0	0		Е	3.1	CLDY	3	0
10/16/94	76	54	65	0.00	0.0	0	1.1	SE	4.5	PC	0	0
10/17/94	76	50	63	0.03	0.0	0	R-,L	S	6.3	CLDY	2	0
10/18/94	63	58	61	0.53	0.0	0	R,RW-,L	S	8.8	CLDY	4	0
10/19/94	73	50	62	0.01	0.0	0	L,F	w	5.6	PC	3	0
10/20/94	67	43	55	0.00	0.0	0		w	3.6	CLR	10	0
10/21/94	73	40	57	0.00	0.0	0		SE	1.3	CLR	8	0
10/22/94	73	49	61	0.00	0.0	0		SW	4.0	CLR	4	0
10/23/94	62	40	51	0.00	0.0	0		W	6.1	CLR	14	0
10/24/94	54	36	45	0.21	0.0	0	R,RW-,L	W	5.6	PC	20	0
10/25/94	47	31	39	0.00	0.0	0		W	4.8	PC	26	0
10/26/94	53	34	44	0.00	0.0	0		NW	2.4	CLR	21	0
10/27/94	58	29	44	0.00	0.0	0		S	5.3	CLR	21	0
10/28/94	62	35	49	0.00	0.0	0		S	10.9	CLR	16	0
10/29/94	68	45	57	0.00	0.0	0		SW	8.1	PC	8	0
10/30/94	66	50	58	0.00	0.0	0		NE	4.2	CLDY	7	0
10/31/94	51	35	43	1.01	0.0	0	TRW,R,R-, L	NE	10.9	CLDY	22	0
Total/ Average ⁵	66.7	45.2	56.0	3.11	0.0			NE	5.4		283	9
		45.2	50.0	5.11	0.0			INE	5.4		203	9
Departure from Average	+1.6	+1.4	+1.5	+0.43	-0.1			S	-0.7		-66	-7

112

¹Snow depth at 7 AM LST.

²DEGREE DAYS: Heat and Cool base=65F; Heating/dd July-June. Cooling/dd Jan.-Dec.

³WEATHER TYPES: F=Fog; T=Thunderstorm; IP=Ice Pellets; A=Hail; R=Rain; S=Snow; Z=Freezing Precip; D=Dust; H=Haze; BS=BlowingSnow; RW=Rain Showers; SW=Snow Showers; L=Drizzle; INTENSITIES: +heavy; -light; absence of symbol indicates moderate, T = Trace. ⁴Sky 7 AM - 7PM LST. Other data midnight - midnight. ⁵Averages 1961-1990 data.

Champaign, IL Water Survey Research Center			Local Climatological Data Illinois State Water Survey				November 1994 Summary					
Water 5	ui vey K	esearch	Center		lois Sta	le wale	Survey		-	Summar	y	
	Temperature			Precip	Snow ¹		Weather	w	ind	Sky	Degree	Dave2
Date	Max. Min. Mean		Inches			Types ³			Cover ⁴	Degree Days Heat Coo		
11/01/94	52	34	43	0.00	0.0	0		NW	7.1	PC	22	0
11/02/94	64	34	49	0.00	0.0	0		S	10.7	PC	16	0
11/03/94	73	48	61	0.02	0.0	0	RW-,L	S	12.9	CLDY	4	Ő
11/04/94	66	59	63	1.43	0.0	0	TRW,R,R W+,L	S	13.3	CLDY	2	0
11/05/94	65	51	58	0.83	0.0	0	TRW-, RW+,R-,F	S	9.6	CLDY	7	0
11/06/94	57	44	51	0.00	0.0	0		w	8.9	CLR	14	0
11/07/94	59	36	48	0.00	0.0	0		S	7.8	PC	17	0
11/08/94	64	42	53	0.00	0.0	0		S	8.7	CLDY	12	0
11/09/94	61	42	52	1.19	0.0	0	R,L,F	NE	10.6	CLDY	13	0
11/10/94	53	35	44	0.00	0.0	0		NE	7.9	CLR	21	0
11/11/94	58	31	45	0.00	0.0	0	F	SE	4.7	PC	20	0
11/12/94	53	44	49	0.00	0.0	0	L	SSW	8.2	CLDY	16	0
11/13/94	67	52	60	0.00	0.0	0		S	14.0	CLDY	5	0
11/14/94	62	45	54	0.32	0.0	0	R,R-,L	SW	8.6	CLDY	11	0
11/15/94	51	39	45	0.00	0.0	0		NE	7.7	CLDY	20	0
11/16/94	55	34	45	0.00	0.0	0		NE	4.4	PC	20	0
11/17/94	49	33	41	0.00	0.0	0	L,F	S	10.1	CLDY	24	0
11/18/94	60	35	48	0.00	0.0	0	F	W	8.6	CLR	17	0
11/19/94	49	33	41	0.00	0.0	0		NE	3.3	CLDY	24	0
11/20/94	58	43	51	0.64	0.0	0	R,L	SE	9.3	CLDY	14	0
11/21/94	54	34	44	0.14	0.0	0	TRW,A	SW	14.8	PC	21	0
11/22/94	35	26	31	0.00	0.0	0		NW	7.3	CLDY	34	0
11/23/94	44	24	34	0.00	0.0	0		W	8.4	CLR	31	0
11/24/94	51	30	41	0.00	0.0	0		SW	11.1	CLR	24	0
11/25/94	50	32	41	0.00	0.0	0		N	2.9	CLR	24	0
11/26/94	52	29	41	0.00	0.0	0		E	3.9	PC	24	0
11/27/94	61	40	51	0.58	0.0	0	TRW,R,L	SE	13.2	CLDY	14	0
11/28/94	44	33	39	0.00	0.0	0		SW	16.2	PC	26	0
11/29/94	43	27	35	0.00	0.0	0		W	6.8	CLR	30	0
11/30/94	39	26	33	0.00	Т	0	SW-	W	5.7	CLR	32	0
Total/												
Average ⁵	55.0	37.2	46.1	5.15	Т			S	8.9		559	0
Departure from	+4.7	+3.4	+4.0	+2.05	-2.2			sw	+1.4		-137	+0
Average			_									

²DEGREE DAYS: Heat and Cool base=65F; Heating/dd July-June. Cooling/dd Jan.-Dec.

³WEATHER TYPES: F=Fog; T=Thunderstorm; IP=Ice Pellets; A=Hail; R=Rain; S=Snow; Z=Freezing Precip; D=Dust; H=Haze; BS=BlowingSnow; RW=Rain Showers; SW=Snow Showers; L=Drizzle; INTENSITIES: +heavy; -light; absence of symbol indicates moderate, T = Trace.

⁴Sky 7 AM - 7PM LST. Other data midnight - midnight.

Champaign, IL Water Survey Research Center						cal Data Survey	December 1994 Summary					
	Temperature			Precip	<u>Snow</u> 1		Weather	Wind		Sky	Degree	e Days
Date	Max.	Min.	Mean	Inches	and the second second second second	Depth	Types ³	Dir.	Speed	Cover ⁴	Heat	Cool
12/01/94	53	28	41	0.00	0.0	0		S	12.3	CLR	24	0
12/02/94	57	29	43	0.00	0.0	0		S	9.0	CLR	22	0
12/03/94	53	41	47	0.00	0.0	0	L	S	8.5	CLDY	18	0
12/04/94	61	43	52	0.00	0.0	0	L,F	E	2.7	CLDY	13	0
12/05/94	54	41	48	0.01	0.0	0	L,F	NW	4.4	CLDY	17	0
12/06/94	44	38	41	0.73	0.0	0	R,R-,L,F	NE	3.9	CLDY	24	0
12/07/94	46	32	39	0.14	0.0	0	R,L	N	7.8	CLDY	26	0
12/08/94	37	29	33	0.00	0.0	0		SE	4.7	CLDY	32	0
12/09/94	37	29	33	0.13	0.0	0	R,L	N	6.2	CLDY	32	0
12/10/94	34	20	27	0.00	0.0	0		NW	8.8	CLDY	38	0
12/11/94	25	13	19	0.00	0.0	0	SW-	NW	4.9	CLDY	46	0
12/12/94	31	20	26	0.00	0.0	0		SE	3.9	CLDY	39	0
12/13/94	29	20	25	0.00	0.0	0		NE	2.8	CLDY	40	0
12/14/94	38	23	31	0.00	0.0	0		Е	4.2	CLDY	34	0
12/15/94	41	28	35	0.01	0.0	0	IP.F	SE	3.4	CLDY	30	0
12/16/94	44	34	39	0.65	0.0	0	R,L,F	SE	8.1	CLDY	26	0
12/17/94	46	32	39	0.00	0.0	0		W	9.7	CLDY	26	0
12/18/94	32	29	31	0.00	0.0	0	SG-	NW	6.4	CLDY	34	0
12/19/94	41	26	34	0.00	0.0	0		S	7.7	CLDY	31	0
12/20/94	51	31	41	0.00	0.0	0	L	SE	6.5	CLDY	24	0
12/21/94	52	29	41	0.00	0.0	0	~	ESE	3.1	PC	24	Ő
12/22/94	55	36	46	0.00	0.0	0		NNE	4.1	CLDY	19	0
12/23/94	40	33	37	0.00	0.0	0		N	8.4	CLDY	28	0
12/24/94	40	30	35	0.00	0.0	0	L,F	N	7.6	CLDY	30	0
12/25/94	50	27	39	0.00	0.0	0	-,-	NW	4.8	PC	26	0
12/26/94	51	24	38	0.00	0.0	0	F	SE	2.4	CLR	27	0
12/27/94	53	23	38	0.00	0.0	0		S	5.4	CLR	27	0
12/28/94	38	32	35	0.00	0.0	0		N	6.7	PC	30	0
12/29/94	38	28	33	0.00	0.0	0		NE	7.0	PC	32	0
12/30/94	44	25	35	0.00	0.0	0	R-,L-	NE	3.1	PC	30	0
12/31/94	37	32	35	0.23	0.6	0	R-,L,S-,F	N	5.0	CLDY	30	0
Total/	51	56	55	0.25	0.0	0	1,1,0,1	14	5.0	CLDT	50	0
Average ⁵	43.6	29.2	36.4	1.90	0.6			N	5.9		879	0
Departure from Average	+7.1	+7.2	+7.2	-1.12	-5.4			sw	-2.0		-238	+0

- ⁴Sky 7 AM 7PM LST. Other data midnight midnight.
- ⁵Averages 1961-1990 data.

387 05/05 2 43420 But

¹Snow depth at 7 AM LST.

²DEGREE DAYS: Heat and Cool base=65F; Heating/dd July-June. Cooling/dd Jan.-Dec.

³WEATHER TYPES: F=Fog; T=Thunderstorm; IP=lce Pellets; A=Hail; R=Rain; S=Snow; Z=Freezing Precip; D=Dust; H=Haze; BS=BlowingSnow; RW=Rain Showers; SW=Snow Showers; L=Drizzle; INTENSITIES: +heavy; -light; absence of symbol indicates moderate, T = Trace.