1983

Illinois Turfgrass Research Report

Department of Horticulture and Agricultural Experiment Station University of Illinois at Urbana-Champaign

Horticulture Series 51, March 1984

ILLINOIS TURFGRASS RESEARCH REPORT

This report presents the results for 1983 of turfgrass research being conducted at the University of Illinois. The reports represent contributions from the Department of Horticulture, the Office of Agricultural Entomology and the Department of Plant Pathology. We hope that the information presented will be useful when making turfgrass management decisions. The goal of our research program is to provide the turfgrass manager of Illinois with information that will help in maintaining high quality turfgrass stands. We always welcome suggestions regarding our research program.

When evaluating the information in this booklet, please keep in mind that the 1983 growing season was characterized by unusually hot, dry weather. Our research area is given minimal irrigation in order to observe differences in stress tolerance in the treated turf. We urge everyone to attend our 1984 field day which will be held on July 25 to view to view our research and gain an understanding of the work we are doing.

We would like to thank the turf professionals of Illinois for support of our program. Through direct contributions and attendance at Illinois Turfgrass Foundation activities, funds have been raised to conduct our research. Within this booklet we have listed the individual, companies, and organizations that have provided assistance to our program. This support has made our program possible.

avid J. Wehner, Editor

Jean E. Haley, Editor

ACKNOWLEDGEMENTS

We would like to express thanks to the following companies and organizations for their support of our turfgrass research program through their contributions of time, materials, or funding.

Allied Chemicals Beckman Turf & Irrigation Brayton Chemical Co. E. F. Burlingham & Sons Cantigny Gardens & Museums CelPril Central Illinois Golf Course Superintendents Association Chem-Lawn Chicago District Golf Foundation Chicago Toro CIBA-GEIGY Corp. W. A. Cleary John Deer & Company Diamond Shamrock DuPage County Extension Office E. I. Du Pont de Nemours & Co. Elanco Products Elwood Aviation Emerald Green Sod Farm Estech General Chemicals Corp. BFC Chemicals, Inc. Glencoe Golf Club Hawkeye Chemicals H. and E. Sod Farms John Hoerr Sod Farm Illinois Lawn Equipment Illinois Turfgrass Foundation International Seeds, Inc. Jacklin Seed Co. Ed Keeven Sod Co., Inc. Lakeshore Equipment & Supply Lebanon Chemical Corp. Lofts Pedigreed Seed, Inc. 3M Mallinckrodt Inc. Midwest Association of Golf Course Superintendants Mobay Chemical Corporation Monsanto Co. Mueller Turf Nursery Nice 'N Green Northrup King Co. Northwestern Illinois Golf Course Superintendents Association Olin Corporation

Outdoor Equipment PBI Gordons Peoria Landscaping Permagreen Supreme, Inc. Pickseed West, Inc. Pure Seed Testing, Inc. Rhone-Poulenc, Inc. Quality Sod Rock Island County Extension Office O. M. Scott and Sons Seaboard Seed Co. Silver Lake Country Club Thornton's Turf Nursery Toro Co. Tri State Toro TUCO Union Carbide University of Illinois Athletic Association Benedict O. Warren Warren's Turf Nursery, Inc.

TABLE OF CONTENTS

P	AGE
USDA NATIONAL KENTUCKY BLUEGRASS TRIAL T. W. Fermanian, J. E. Haley and D. J. Wehner	1
USDA NATIONAL PERENNIAL RYEGRASS CULTIVAR EVALUATION T. W. Fermanian, J. E. Haley and D. J. Wehner	9
TALL FESCUE CULTIVAR EVALUATION UNDER TWO MAINTENANCE LEVELS	14
REGIONAL CULTIVAR EVALUATION T. W. Fermanian and J. E. Haley	17
BENTGRASS BLENDS FOR PUTTING GREEN TURF D. J. Wehner and J. E. Haley	25
FAIRWAY BENTGRASS MANAGEMENT STUDY D. J. Wehner and J. E. Haley	27
ANNUAL BLUEGRASS CONTROL IN CREEPING BENTGRASS D. J. Wehner and J. E. Haley	29
EVALUATION OF HERBICIDES FOR PREEMERGENCE AND POSTEMERGENCE CONTROL OF CRABGRASS	33
EVALUATION OF HERBICIDES FOR BROADLEAF WEED CONTROL IN TURF	35
FLUID NITROGEN FERTILIZERS FOR HOME LAWNS T. W. Fermanian, D. J. Wehner and J. E. Haley	38
LOW VOLUME FERTILIZER APPLICATION T. W. Fermanian and J. E. Haley	41
THE EVALUATION OF LATE FALL FERTILIZATION D. J. Wehner and J. E. Haley	43
LIQUID NITROGEN RESIDUAL STUDY D. L. Martin and D. J. Wehner	47
THE EFFECTS OF SAND TOPDRESSING ON A HEAVILY THATCHED CREEPING BENTGRASS GREEN	53
GROWTH RETARDATION OF KENTUCKY BLUEGRASS TURF	58
GROWTH RETARDANTS FOR LOW AND MEDIUM MAINTENANCE TURFS	63

TABLE OF CONTENTS

DACE

	PAGE
KENTUCKY BLUEGRASS CULTIVAR RESPONSE TO THE APPLICATION OF MON 4621, A PLANT GROWTH RETARDANT T. W. Fermanian and J. E. Haley	65
THE USE OF GROWTH RETARDANTS ON TALL FESCUE T. W. Fermanian, J. E. Haley and D. J. Wehner	73
1983 TURFGRASS INSECT SITUATION IN ILLINOIS	77
PLANT PATHOLOGY RESEARCH	78
WEATHER DATA FOR URBANA AND KILBOURNE	80

USDA NATIONAL KENTUCKY BLUEGRASS TRIAL

T. W. Fermanian, J. E. Haley, and D. J. Wehner

INTRODUCTION

Kentucky bluegrass (Poa pratensis) is the primary turfgrass used for home lawns in Illinois. The many available cultivars of Kentucky bluegrass differ considerably in characteristics such as quality, color, density, texture, stress tolerance, and resistance to disease. The turf program at the University of Illinois is one of 35 participants in a nationwide Kentucky bluegrass trial. This evaluation will examine the long term performance of 84 Kentucky bluegrass cultivars under a variety of environmental conditions and cultural regimes. At our Urbana research facility the trial has been established on a silt loam soil. A duplicate trial has been established on a pure sand soil at our Kilbourne facility. The soil at these sites differs primarily in nutrient and moisture holding capacity.

Urbana

MATERIAL AND METHODS

The Urbana evaluation was established September 15, 1980. Plot size is 5 x 6 feet and each cultivar is replicated 3 times. Prior to establishment, the area was fertilized with 1 lb N/1000 sq ft. After seeding, plots were covered with Soil Guard, a synthetic spray mulch and irrigated as needed. In 1981 the area received a total of 4 lb N/1000 sq ft and in 1982 the area was fertilized with a total of 3 lb N/1000 sq ft.

In 1983 half of each 6 x 5 foot plot was treated with the growth regulator Mon 4621 at a rate of 2.0 lb ai/A. This was to determine any differences among the cultivars in response to the growth regulator. The results of this investigation are listed in the report "Kentucky Bluegrass Response to the Application of MON 4621, a Plant Growth Retardant", page 65. During the 1983 growing season the area was treated with 4 lb N/1000 sq ft. No preemergence crabgrass control herbicide was used. The area was irrigated as needed to prevent wilt.

RESULTS

Turfgrass cultivars differed widely in their performance throughout the 1983 season (Table 1). In general turfgrass quality was fair to good with quality the highest during June and September. Although the plots were irrigated, quality declined during July and August because of heat and drouth stress. Several cultivars that did not recover from the stress are Lovegreen, Charlotte, Dormie, and S-21. Cool weather pythium affected the early spring performance of many varieties. Varieties exhibiting the greatest susceptibility to pythium were Piedmont, Wabash, K3-162, S. D. Common, Kenblue and Monopoly. Dollar spot disease was a problem in late July. The cultivars A20-6A, A20-6, Escort, Harmony, Charlotte, Nugget, and Dormie showed the most injury from this disease.

Kilbourne

MATERIAL AND METHODS

The trial at the Illinois River Sand Field, Kilbourne, was established April 6, 1981. Dolomitic limestone was applied to the area at 1.5 tons/A in the fall 1980. Prior to seeding, fertilizer was applied as 34-0-0 (1.6 lb N/1000 sq ft), 0-44-0 (110 lb/A), 0-0-60 (280 lb/A) and potassium magnesium sulfate (180 lb/A). Both complete analysis fertilizers (water soluble nitrogen source) and slow-release nitrogen fertilizers were applied throughout 1981, totalling 6.5 lb N/1000 sq ft. Granular Tupersan, a preemergence crabgass herbicide was applied at seeding at a rate of 6 lb ai/A. A second application of Tupersan WP was made on May 18, 1981 at a rate of 6 lb ai/A. Basagran at 1 quart/A was applied on September 19 and September 28, to control nutsedge. Irrigation is essential for turf growing in a pure sand soil. Although excessive rainfall characterized the 1981 growing season, plots were still irrigated to prevent moisture stress. Plots were irrigated as follows: 3.0"/April in 10 applications, 1.3"/May in 5 applications, 2.8"/June in 4 applications, 3.4"/July in 4 applications, 4.2"/August in 5 applications and 2.5"/September in 3 applications.

During the 1982 growing season the turf was fertilized with a 12-12-12 analysis fertilizer. Applications were made in April, June, August, and October at a rate of .6 lb N/1000 sq ft per application. The preemergence herbicide siduron (Tupersan) was applied at a rate of 6 lb ai/A on April 28 and June 9. Plots were irrigated to prevent moisture stress as follows: 3.0:"/May in 5 applications, 1"/June in 1 application, 6.0"/July in 4 applications, and 6.0"/August in 6 applications.

In 1983 the turf was fertilized with approximately 5.8 lb N/1000 sq ft during the growing season. Fertilizers and rates used include 12-12-12 at .5 lb N/1000 sq ft on May 5 and .6 lb N/1000 sq ft on June 6, July 5 and August 1; 18-5-9 at a rate of .9 lb N/1000 sq ft August 17 and 31; Nitroform (38-0-0) at 1 lb N/1000 sq ft on May 5; and IBDU (31-0-0) at a rate of .7 lb N/1000 sq ft on August 1. The area was irrigated during the season as follows: 5.05"/May in 4 applications, 4.55"/June in 4 applications, 7.45"/July in 6 applications, 4.1"/August in 5 applications and 2.45"/Sept. in 3 applications.

RESULTS

With a few exceptions, quality was better during the 1983 growing season than in previous years. Although July and August were drouthy most cultivar quality remained fair to good. The availability of frequent, deep irrigation prevented any drouth injury to the turf and kept the plants from becoming dormant. There were no disease problems at this site during the 1983 season.

Spot 2 Greenup 3 All		Pythium ²	Dollar	Spring	Quality			Quality	5	
Cultivar 4/8 7/25 3/15 Dates ⁴ 5/6 6/7 7/21 8/30 9/22 I-13 8.7 5.7 3.3 7.8 7.7 8.7 8.7 8.7 7.3 BClipse 9.0 7.7 5.0 7.4 6.0 8.3 7.3 7.7 7.3 PSU-173 8.0 8.3 5.3 7.3 5.7 7.3 8.0 7.7 7.3 7.0 7.3 7.0 7.3 7.0 7.3 7.0 7.3 7.0 7.3 7.0 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.3 7.0			Spot ²	Greenup	All All					
I-13 8.7 5.7 3.3 7.8 7.7 8.7 6.3 7.3 8.7 FcLipse 9.0 7.7 5.0 7.4 6.0 8.3 7.3 7.7 7.3 PSU-173 8.0 8.3 5.3 7.3 5.7 7.3 8.0 7.7 7.7 PMUndi 7.7 6.7 4.7 7.0 6.3 7.7 7.7 7.7 7.7 7.7 Stand 6.3 3.0 7.0 7.3 8.0 7.7 7.3 A20 8.0 5.0 4.0 6.9 7.0 8.3 6.7 7.3 A20-6A 8.3 4.3 4.0 6.8 6.7 7.3 6.3 6.0 7.3 Rugby 8.3 6.0 4.7 6.8 6.0 7.3 6.7 6.7 6.7 Stassa 7.0 5.7 5.3 6.8 6.7 7.3 6.0 5.0 7.0 6	Cultivar	4/8	7/25	3/15	Dates ⁴	5/6	6/7	7/21	8/30	9/22
1-13 8.7 5.7 5.3 7.8 7.7 8.7 8.7 8.7 7.3 7.7 7.3 PSU-173 8.0 8.3 5.3 7.3 5.7 7.3 8.0 7.7 7.3 PSU-173 8.0 8.3 5.3 7.3 5.7 7.3 8.0 7.7 7.3 PSU-173 8.0 8.3 5.3 7.3 5.7 7.3 8.0 7.7 7.3 PSU-173 8.0 8.0 5.1 4.7 7.0 6.3 7.7 7.3 8.0 7.7 7.3 PSU-173 8.0 5.0 4.0 6.9 7.0 7.3 6.0 7.3 A20 8.0 5.0 4.7 6.8 6.7 7.7 5.7 5.3 7.3 7.7 5.7 6.0 7.0 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.5 7.3 7.6 7.7 <td< td=""><td>T 42</td><td>0.7</td><td></td><td></td><td>7.0</td><td></td><td>0.7</td><td><i>c</i></td><td></td><td>0.7</td></td<>	T 42	0.7			7.0		0.7	<i>c</i>		0.7
BCL1pse 9.0 7.7 5.0 7.4 6.0 8.3 7.3 7.7 7.3 7.7 7.7 PSU-173 8.0 8.3 5.3 7.3 5.7 7.3 8.0 7.7 7.3 Enmundi 7.7 6.7 4.7 7.0 6.3 7.7 7.7 5.7 7.0 H-7 9.0 6.3 3.0 7.0 7.3 8.0 7.7 7.7 5.7 7.0 H-7 9.0 6.3 3.0 7.0 7.3 8.0 7.7 7.3 8.0 7.7 7.3 A20 8.0 5.0 4.0 6.9 7.0 7.3 6.3 6.0 7.3 A20-6A 8.3 4.3 4.0 6.8 6.7 7.7 5.7 5.3 7.3 5.7 7.0 6.7 SH2 6.7 6.3 5.0 6.8 6.3 7.3 5.7 7.3 6.0 6.7 7.3 6.0 6.7 7.0 7.7 7.7 7.3 6.3 6.0 7.0 </td <td>1-13</td> <td>8.7</td> <td>5.7</td> <td>3.3</td> <td>7.8</td> <td>1.1</td> <td>8.7</td> <td>6.3</td> <td>1.3</td> <td>8.7</td>	1-13	8.7	5.7	3.3	7.8	1.1	8.7	6.3	1.3	8.7
PSU-173 B.0 B.3 S.3 S.7 T.3 B.0 T.7 T.7 Panundi T.7 G.7 A.7 T.7 T.7 T.7 T.7 H-7 9.0 G.3 3.0 T.0 G.3 T.7 T.7 T.7 T.7 A20 B.0 S.0 4.0 G.9 T.0 B.3 S.7 S.0 T.3 A20 B.0 T.0 S.0 G.9 T.0 T.3 G.3 G.0 T.3 A20-6A B.3 A.3 4.0 G.8 G.7 T.7 S.7 T.3 S.7 T.0 G.3 T.3 T.3 S.7 T.0 T.3 Rugby B.3 G.0 A.7 G.8 T.0 T.7 S.7 T.3 G.3 G.0 T.0 T.3 S.7 T.0 G.7 T.5 T.3 G.8 G.7 T.7 S.7 T.3 G.0 T.0 T.0 S.3 G.0 T.0 T.0 S.7 T.0 G.3 G.0 T.0 T.0 S.7 <td>Eclipse</td> <td>9.0</td> <td>1.1</td> <td>5.0</td> <td>7.4</td> <td>6.0</td> <td>8.3</td> <td>1.3</td> <td>1.1</td> <td>1.3</td>	Eclipse	9.0	1.1	5.0	7.4	6.0	8.3	1.3	1.1	1.3
Enumaria 7.7 6.7 4.7 7.0 6.3 7.7 7.7 5.7 7.7 7.3 H-7 9.0 6.3 3.0 7.0 7.3 6.0 5.7 6.0 7.3 K_{3-179 8.3 5.7 5.0 7.0 6.0 7.3 6.7 7.7 7.3 Trenton 8.0 7.0 5.0 6.9 7.0 7.3 6.3 6.7 7.7 7.3 Trenton 8.0 7.0 5.0 6.9 7.0 7.3 6.3 6.0 7.3 A20 6A 8.3 4.3 4.0 6.8 6.7 7.7 5.7 5.3 7.3 Rugby 8.3 6.0 4.7 6.8 7.0 7.7 5.7 6.0 7.0 SH-2 6.7 6.3 5.0 6.8 6.3 7.3 5.7 7.0 6.7 CEB VB 3965 7.7 5.7 5.3 6.8 6.7 7.3 6.3 6.0 7.0 CEB VB 3965 7.7 5.7 4.7 6.7 6.0 7.0 7.0 5.7 7.3 Monopoly 4.7 7.0 4.3 6.7 6.0 6.7 6.7 6.3 7.0 Barblue 9.0 5.3 8.0 6.7 7.3 7.3 6.0 5.0 7.0 Shasta 7.0 5.3 5.0 6.7 7.3 7.3 6.0 5.0 7.0 Cello 8.7 5.0 4.3 6.6 7.7 8.3 6.0 5.0 7.0 Mona 8.0 4.7 5.3 6.6 6.7 7.7 8.3 6.0 4.7 5.0 Mona 8.0 4.7 5.3 6.6 6.7 7.7 8.3 6.0 5.7 7.0 Plush 7.3 7.3 5.0 6.6 5.3 6.7 7.0 6.7 7.3 Fuchdown 7.7 5.3 6.0 6.6 7.7 7.5 5.7 5.0 6.0 A20 6.0 5.7 6.3 5.0 6.7 7.7 5.3 5.7 7.0 Mona 8.0 4.7 5.3 6.6 6.7 7.0 6.0 5.7 7.0 Mona 8.0 4.7 5.3 6.6 6.7 7.7 5.3 5.7 7.0 Mona 8.0 4.7 5.3 6.6 6.7 7.7 5.3 5.7 7.0 Mona 8.0 4.7 5.3 6.0 6.6 5.3 6.7 7.7 5.3 5.7 7.0 Mona 8.0 4.7 5.3 6.0 6.6 5.3 6.7 7.7 5.3 5.7 7.0 Mona 8.0 4.7 5.3 6.0 6.6 5.3 6.7 7.0 6.0 7.7 7.3 MA20 6.0 5.7 6.6 6.3 7.3 5.7 5.0 6.0 MA20-6 9.0 4.0 3.3 6.6 6.7 8.0 5.7 5.0 6.0 MA20-6 9.0 4.0 3.3 6.0 6.6 5.7 8.3 7.0 5.3 5.7 Touchdown 7.7 5.3 6.0 5.7 6.6 6.3 7.3 5.7 5.0 6.0 MA20-6 9.0 4.0 3.3 6.0 6.6 5.7 8.0 5.3 5.7 5.0 6.0 MA20-6 9.0 4.0 3.3 6.6 6.7 8.0 5.3 5.7 5.7 7.3 MJ 735 8.0 6.0 4.7 6.6 5.7 8.0 5.3 5.7 5.7 7.3 MW AG 480 7.7 6.0 2.3 6.4 6.3 7.7 6.0 6.3 5.7 5.7 7.3 MW AG 480 7.7 6.0 2.3 6.4 6.3 7.7 6.0 6.3 6.0 6.3 MW AG 480 7.7 6.0 2.3 6.4 6.3 7.7 5.3 6.0 6.3 MW AG 480 7.7 6.0 2.3 6.4 6.3 7.0 5.7 5.3 6.0 MW AG 480 7.7 6.0 2.3 6.4 6.3 7.0 5.7 5.3 6.3 MO 5.7 5.3 6.0 6.4 5.7 6.3 6.0 6.3 7.3 Banff 8.3 5.3 5.0 6.4 6.3 7.0 5.7 5.3 6.3 MO 5.7 5.0 6.0 6.4 5.7 7.0 5.3 6.0 7.0 5.7 5.3 6.3 MO 5.8 7.3 7.0 5.7 5.3 6.3 MO 5.8 7.3 7.0 5.7 5.3 6.3 MO 5.9 7.5 5.3 6.0 7.3 7.0 5.7	PSU-1/3	8.0	8.3	5.3	1.3	5.1	/.3	8.0	1.1	1.3
H-7 9.0 6.3 3.0 7.0 7.3 8.0 5.7 6.0 7.3 X3-179 8.3 5.7 5.0 7.0 6.0 7.3 6.7 7.7 7.3 A20 8.0 5.0 4.0 6.9 7.0 8.3 5.7 5.0 7.3 Trenton 8.0 7.0 5.0 6.9 7.0 7.3 6.3 6.0 7.3 Rugby 8.3 6.0 4.7 6.8 6.7 7.7 5.7 6.0 7.0 SH-2 6.7 6.3 5.0 6.8 6.3 7.3 5.7 7.0 6.7 Z25 7.7 5.7 5.3 6.8 6.7 7.0 5.7 7.3 Monopoly 4.7 7.0 4.3 6.7 6.6 6.7 7.0 5.7 7.3 Shasta 7.0 5.3 5.0 6.7 7.3 7.0 6.0 5.7 7.0 KW AG 463 8.0 5.3 5.0 6.7 7.3 6.3	Enmundi	1.1	6./	4.7	7.0	6.3	1.1	1.1	5./	7.0
K3-179 8.3 5.7 5.0 7.0 6.0 7.3 6.7 7.7 7.3 A20 8.0 5.0 4.0 6.9 7.0 8.3 5.7 5.0 7.3 Trenton 8.0 7.0 5.0 6.9 7.0 7.3 6.3 6.0 7.3 Rugby 8.3 6.0 4.7 6.8 7.0 7.7 5.7 5.7 7.0 6.7 SH-2 6.7 6.3 5.0 6.8 6.3 7.3 5.7 7.0 6.7 225 7.7 5.7 5.3 6.8 6.7 7.3 6.3 6.0 7.0 SMonopoly 4.7 7.0 4.3 6.7 6.0 7.0 5.7 7.3 Shasta 7.0 5.3 5.0 6.7 7.3 6.0 5.0 7.0 K3-178 8.0 6.0 5.0 6.6 7.0 7.3 6.3 6.0 K3-178 8.0 6.0 5.0 6.6 5.7 7.0 6.7	H-7	9.0	6.3	3.0	7.0	7.3	8.0	5.7	6.0	7.3
A20 8.0 5.0 4.0 6.9 7.0 8.3 5.7 5.0 7.3 Trenton 8.0 7.0 5.0 6.9 7.0 7.3 6.3 6.0 7.3 Rugby 8.3 6.0 4.7 6.8 6.7 7.7 5.7 5.3 7.3 Rugby 8.3 6.0 4.7 6.8 6.7 7.3 6.3 6.0 7.0 SH-2 6.7 6.3 5.0 6.8 6.3 7.3 5.7 7.0 6.7 225 7.7 5.7 5.3 6.8 6.7 7.3 6.3 6.0 7.0 Barblue 9.0 5.3 8.0 6.7 7.3 6.3 6.0 5.3 7.0 Barblue 9.0 5.3 5.0 6.7 7.3 6.3 6.0 5.0 7.0 Shasta 7.0 5.3 5.0 6.7 7.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.0 5.7	к3-179	8.3	5.7	5.0	7.0	6.0	7.3	6.7	7.7	7.3
Trenton 8.0 7.0 5.0 6.9 7.0 7.3 6.3 6.0 7.3 A20-6A 8.3 4.3 4.0 6.8 6.7 7.7 5.7 5.3 7.3 Rugby 8.3 6.0 4.7 6.8 7.0 7.7 5.7 5.3 7.3 SH-2 6.7 6.3 5.0 6.8 6.3 7.3 5.7 7.0 6.7 225 7.7 5.7 5.3 6.8 6.7 6.3 6.0 7.0 Barblue 9.0 5.3 8.0 6.7 6.7 6.3 6.0 7.0 Shasta 7.0 5.3 5.0 6.7 7.3 7.0 6.0 5.0 7.0 WAG 463 8.0 5.3 5.0 6.7 7.3 7.0 6.0 5.0 7.0 WAG 463 8.0 5.3 5.0 6.7 7.3 7.0 6.7 7.3 Mona 8.0 4.7 5.3 6.6 7.7 7.3 5.7 5.0	A20	8.0	5.0	4.0	6.9	7.0	8.3	5.7	5.0	7.3
A20-6A 8.3 4.3 4.0 6.8 6.7 7.7 5.7 5.3 7.3 Rugby 8.3 6.0 4.7 6.8 7.0 7.7 5.7 6.0 7.0 SH-2 6.7 6.3 5.0 6.8 6.3 7.3 5.7 6.0 7.0 225 7.7 5.7 5.3 6.8 6.7 7.3 6.3 6.0 7.0 Barblue 9.0 5.3 8.0 6.7 7.3 6.0 5.0 7.0 Shasta 7.0 5.3 5.0 6.7 7.3 7.0 6.0 5.0 7.0 Shasta 7.0 5.3 5.0 6.7 7.3 7.0 6.0 5.0 7.0 WW AG 463 8.0 5.3 5.0 6.7 7.3 7.0 6.0 5.7 7.0 Cello 8.7 5.0 4.3 6.6 7.7 8.3 6.0 5.0 7.0 Mona 8.0 6.3 5.3 6.7 7.7 5.3	Trenton	8.0	7.0	5.0	6.9	7.0	7.3	6.3	6.0	7.3
Rugby 8.3 6.0 4.7 6.8 7.0 7.7 5.7 6.0 7.0 SH-2 6.7 6.3 5.0 6.8 6.3 7.3 5.7 7.0 6.7 225 7.7 5.7 5.3 6.8 6.7 7.3 6.3 6.0 7.0 CEB VB 3965 7.7 5.7 4.7 6.7 6.0 7.0 7.7 5.7 7.3 Monopoly 4.7 7.0 4.3 6.7 6.0 6.7 6.3 7.0 Barblue 9.0 5.3 8.0 6.7 7.3 7.0 6.0 5.0 7.0 Shasta 7.0 5.3 5.0 6.7 7.3 7.0 6.0 5.0 7.0 WM AG 463 8.0 5.3 5.0 6.7 7.7 8.3 6.0 4.7 5.0 Cello 8.7 5.3 5.0 6.6 7.7 7.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.7 7.0 6.7 7.3	A20-6A	8.3	4.3	4.0	6.8	6.7	7.7	5.7	5.3	7.3
SH-2 6.7 6.3 5.0 6.8 6.3 7.3 5.7 7.0 6.7 225 7.7 5.7 5.3 6.8 6.7 7.3 6.3 6.0 7.0 CEB VB 3965 7.7 5.7 4.7 6.7 6.0 7.0 7.0 5.7 7.3 Monopoly 4.7 7.0 4.3 6.7 6.0 6.7 6.7 6.3 7.0 Barblue 9.0 5.3 8.0 6.7 7.3 7.0 6.3 7.0 Shasta 7.0 5.3 5.0 6.7 7.3 7.0 6.0 5.0 7.0 WW AG 463 8.0 5.3 5.0 6.7 7.3 6.0 5.0 7.0 K3-178 8.0 6.0 5.0 6.6 7.0 7.0 6.0 5.7 7.0 Mona 8.0 7.3 5.0 6.6 5.3 6.7 7.0 6.7 7.3 Plush 7.3 7.3 5.0 6.6 6.7 8.0 5.7 <td>Rugby</td> <td>8.3</td> <td>6.0</td> <td>4.7</td> <td>6.8</td> <td>7.0</td> <td>7.7</td> <td>5.7</td> <td>6.0</td> <td>7.0</td>	Rugby	8.3	6.0	4.7	6.8	7.0	7.7	5.7	6.0	7.0
225 7.7 5.7 5.3 6.8 6.7 7.3 6.3 6.0 7.0 CEB VB 3965 7.7 5.7 4.7 6.7 6.0 7.0 7.0 5.7 7.3 Monopoly 4.7 7.0 4.3 6.7 6.0 6.7 6.7 6.3 7.0 Barblue 9.0 5.3 8.0 6.7 7.3 7.0 6.3 7.0 Shasta 7.0 5.3 5.0 6.7 7.3 7.0 6.0 5.0 7.0 WA G 463 8.0 5.3 5.0 6.7 7.3 6.3 6.3 6.0 Cello 8.7 5.0 4.3 6.6 7.7 8.3 6.0 4.7 5.0 Mona 8.0 6.47 5.3 6.6 6.7 7.0 6.7 7.3 Plush 7.3 7.3 6.0 6.6 5.3 6.7 7.0 6.7 7.3 Such down 7.7 5.3 6.0 6.6 5.7 8.0 6.7 7.	SH-2	6.7	6.3	5.0	6.8	6.3	7.3	5.7	7.0	6.7
CEB VB 3965 7.7 5.7 4.7 6.7 6.0 7.0 7.0 5.7 7.3 Monopoly 4.7 7.0 4.3 6.7 6.0 6.7 6.7 6.3 7.0 Barblue 9.0 5.3 8.0 6.7 5.7 8.3 6.0 5.3 7.7 Shasta 7.0 5.3 5.0 6.7 7.3 7.0 6.0 5.0 7.0 WM AG 463 8.0 5.3 5.0 6.7 7.3 7.0 6.0 5.0 7.0 WW AG 463 8.0 5.3 5.0 6.7 7.3 6.3 6.3 6.0 5.0 Cello 8.7 5.0 4.3 6.6 7.7 8.3 6.0 4.7 5.0 K3-178 8.0 6.0 5.0 6.6 7.0 7.0 6.7 7.3 5.7 7.0 Mona 8.0 7.3 5.0 6.6 5.3 6.7 7.0 6.7 7.3 5.7 7.0 Plush 7.3 <td< td=""><td>225</td><td>7.7</td><td>5.7</td><td>5.3</td><td>6.8</td><td>6.7</td><td>7.3</td><td>6.3</td><td>6.0</td><td>7.0</td></td<>	225	7.7	5.7	5.3	6.8	6.7	7.3	6.3	6.0	7.0
Monopoly 4.7 7.0 4.3 6.7 6.0 6.7 6.3 7.0 Barblue 9.0 5.3 8.0 6.7 5.7 8.3 6.0 5.3 7.7 Shasta 7.0 5.3 5.0 6.7 7.3 7.0 6.0 5.0 7.0 WM AG 463 8.0 5.3 5.0 6.7 7.3 6.3 6.3 6.0 Cello 8.7 5.0 4.3 6.6 7.7 8.3 6.0 4.7 5.0 K3-178 8.0 6.0 5.0 6.6 7.0 7.0 6.0 5.7 7.0 Mona 8.0 4.7 5.3 6.6 6.7 7.7 5.3 5.7 7.0 Mona 8.0 7.3 5.0 6.6 5.3 6.7 7.0 6.7 7.3 Plush 7.3 7.3 6.0 6.6 5.7 8.0 5.7 5.0 6.0 A20-6 9.0 4.0 3.3 6.6 6.7 8.0 5.3	CEB VB 3965	7.7	5.7	4.7	6.7	6.0	7.0	7.0	5.7	7.3
Barblue 9.0 5.3 8.0 6.7 5.7 8.3 6.0 5.3 7.7 Shasta 7.0 5.3 5.0 6.7 7.3 7.0 6.0 5.0 7.0 WW AG 463 8.0 5.3 5.0 6.7 7.3 7.0 6.0 5.0 7.0 WW AG 463 8.0 5.3 5.0 6.7 6.7 7.3 6.3 6.3 6.0 Cello 8.7 5.0 4.3 6.6 7.7 8.3 6.0 5.7 7.0 Mona 8.0 6.0 5.0 6.6 7.7 8.3 6.0 5.7 7.0 Mona 8.0 4.7 5.3 6.6 6.7 7.7 5.3 5.7 7.0 Mona 8.0 7.3 6.0 6.6 5.3 6.7 7.0 6.7 7.3 Plush 7.3 7.3 6.0 6.6 5.7 8.3 7.0 5.3 5.7 Touchdown 7.7 5.3 6.0 5.7 6.6 <td>Monopoly</td> <td>4.7</td> <td>7.0</td> <td>4.3</td> <td>6.7</td> <td>6.0</td> <td>6.7</td> <td>6.7</td> <td>6.3</td> <td>7.0</td>	Monopoly	4.7	7.0	4.3	6.7	6.0	6.7	6.7	6.3	7.0
Shasta 7.0 5.3 5.0 6.7 7.3 7.0 6.0 5.0 7.0 WW AG 463 8.0 5.3 5.0 6.7 6.7 7.3 6.3 6.3 6.0 Cello 8.7 5.0 4.3 6.6 7.7 8.3 6.0 4.7 5.0 K3-178 8.0 6.0 5.0 6.6 7.0 7.0 6.0 5.7 7.0 Mona 8.0 4.7 5.3 6.6 6.7 7.7 5.3 5.7 7.0 Mona 8.0 7.3 6.0 6.6 5.3 6.7 7.7 5.3 5.7 7.0 Mona 7.3 7.3 6.0 6.6 5.7 8.3 7.0 5.3 5.7 7.0 Plush 7.3 6.0 7.3 6.0 6.6 5.7 8.0 5.7 5.0 6.0 A20-6 9.0 4.0 3.3 6.6 6.7 8.0 4.3 5.0 6.7 Z39 8.3 6.3 <td< td=""><td>Barblue</td><td>9.0</td><td>5.3</td><td>8.0</td><td>6.7</td><td>5.7</td><td>8.3</td><td>6.0</td><td>5.3</td><td>7.7</td></td<>	Barblue	9.0	5.3	8.0	6.7	5.7	8.3	6.0	5.3	7.7
MW AG 463 8.0 5.3 5.0 6.7 6.7 7.3 6.3 6.3 6.0 Cello 8.7 5.0 4.3 6.6 7.7 8.3 6.0 4.7 5.0 K3-178 8.0 6.0 5.0 6.6 7.0 7.0 6.0 5.7 7.0 Mona 8.0 4.7 5.3 6.6 6.7 7.7 5.3 5.7 7.0 Mona 8.0 4.7 5.3 6.6 6.7 7.7 5.3 5.7 7.0 Mona 8.0 7.3 6.0 6.6 5.7 8.3 7.0 5.3 5.7 7.0 Plush 7.3 6.0 6.6 5.7 8.3 7.0 5.3 5.7 Touchdown 7.7 5.3 6.0 6.6 6.7 8.0 4.3 5.0 6.7 A20-6 9.0 4.0 3.3 6.6 6.7 8.0 4.3 5.0 6.7 Z39 8.3 6.3 5.7 6.6 6.7	Shasta	7.0	5.3	5.0	6.7	7.3	7.0	6.0	5.0	7.0
Marke 100 8.7 5.0 4.3 6.6 7.7 8.3 6.0 4.7 5.0 K3-178 8.0 6.0 5.0 6.6 7.0 7.0 6.0 5.7 7.0 Mona 8.0 4.7 5.3 6.6 6.7 7.7 5.3 5.7 7.0 Mona 8.0 4.7 5.3 6.6 6.7 7.7 5.3 5.7 7.0 Mona 8.0 7.3 6.0 6.6 5.7 8.3 7.0 5.3 5.7 Plush 7.3 7.3 6.0 6.6 5.7 8.3 7.0 5.3 5.7 Touchdown 7.7 5.3 6.0 6.6 6.7 8.0 5.7 5.0 6.0 A20-6 9.0 4.0 3.3 6.6 6.7 8.0 4.3 5.0 6.7 Columbia 7.3 6.0 5.7 6.6 6.7 7.0 6.3 5.7 6.7 S239 8.3 6.3 5.7 6.6 6.7	WW AG 463	8.0	5.3	5.0	6.7	6.7	7.3	6.3	6.3	6.0
K3-178 8.0 6.0 5.0 6.6 7.0 7.0 6.0 5.7 7.0 Mona 8.0 4.7 5.3 6.6 7.0 7.0 6.0 5.7 7.0 Plush 7.3 7.3 5.0 6.6 5.3 6.7 7.0 6.7 7.3 PSU-150 8.0 7.3 6.0 6.6 5.7 8.3 7.0 5.3 5.7 Touchdown 7.7 5.3 6.0 6.6 6.7 8.0 5.7 5.0 6.0 A20-6 9.0 4.0 3.3 6.6 6.7 8.0 4.3 5.0 6.7 Columbia 7.3 6.0 5.7 6.6 6.3 7.3 5.7 7.3 NJ 735 8.0 6.0 4.7 6.6 5.7 7.0 6.3 5.7 6.7 239 8.3 6.3 5.7 6.6 6.7 7.0 5.3 6.0 7.0 Escort 8.3 4.3 4.0 6.5 6.7 6.0	Cello	8.7	5.0	4.3	6.6	7.7	8.3	6.0	4.7	5.0
Mona 8.0 4.7 5.0 6.6 6.7 7.7 5.3 5.7 7.0 Plush 7.3 7.3 5.0 6.6 5.7 8.3 7.0 6.7 7.3 PSU-150 8.0 7.3 6.0 6.6 5.7 8.3 7.0 5.3 5.7 Touchdown 7.7 5.3 6.0 6.6 5.7 8.3 7.0 5.3 5.7 A20-6 9.0 4.0 3.3 6.6 6.7 8.0 5.7 5.0 6.0 A20-6 9.0 4.0 3.3 6.6 6.7 8.0 4.3 5.0 6.7 Columbia 7.3 6.0 5.7 6.6 6.3 7.3 5.7 7.3 NJ 735 8.0 6.0 4.7 6.6 5.7 7.0 6.3 5.7 6.7 Z39 8.3 6.3 5.7 6.6 6.7 7.0 6.3 6.0 7.0 Basort 8.3 4.3 4.0 6.5 6.7 8.0	K3-178	8.0	6.0	5.0	6.6	7.0	7.0	6.0	5.7	7.0
Plush 7.3 7.3 5.0 6.6 5.3 6.7 7.0 6.7 7.3 PSU-150 8.0 7.3 6.0 6.6 5.7 8.3 7.0 5.3 5.7 Touchdown 7.7 5.3 6.0 6.6 6.7 8.0 5.7 5.0 6.6 A20-6 9.0 4.0 3.3 6.6 6.7 8.0 5.7 5.0 6.0 A20-6 9.0 4.0 3.3 6.6 6.7 8.0 4.3 5.0 6.7 Columbia 7.3 6.0 5.7 6.6 6.3 7.3 5.7 7.3 NJ 735 8.0 6.0 4.7 6.6 5.7 7.0 6.3 5.7 6.7 Z39 8.3 6.3 5.7 6.6 6.7 7.0 5.3 6.0 7.0 Escort 8.3 4.3 4.0 6.5 6.7 8.0 5.3 4.0 7.3 Merion 9.0 7.3 5.7 6.4 6.3 7.7	Mona	8.0	4.7	5.3	6.6	6.7	7.7	5.3	5.7	7.0
Plush 7.3 7.3 5.0 6.6 5.3 6.7 7.0 6.7 7.3 PSU-150 8.0 7.3 6.0 6.6 5.7 8.3 7.0 5.3 5.7 Touchdown 7.7 5.3 6.0 6.6 6.7 8.0 5.7 5.0 6.0 A20-6 9.0 4.0 3.3 6.6 6.7 8.0 4.3 5.0 6.7 Columbia 7.3 6.0 5.7 6.6 6.3 7.3 5.7 7.3 NJ 735 8.0 6.0 4.7 6.6 5.7 7.0 6.3 5.7 6.7 239 8.3 6.3 5.7 6.6 6.7 7.0 6.3 5.7 6.7 Escort 8.3 4.3 4.0 6.5 6.7 8.0 5.3 4.0 7.3 Merion 9.0 7.3 5.7 6.5 6.7 6.0 6.3 6.0 6.3 Merion 9.0 7.3 5.7 6.4 6.3 7.7	nonu	0.0	4.7	•	0.0	0.7		5.5	5.7	7.0
PSU-150 8.0 7.3 6.0 6.6 5.7 8.3 7.0 5.3 5.7 Touchdown 7.7 5.3 6.0 6.6 6.7 8.0 5.7 5.0 6.0 A20-6 9.0 4.0 3.3 6.6 6.7 8.0 4.3 5.0 6.7 Columbia 7.3 6.0 5.7 6.6 6.3 7.3 5.7 7.3 NJ 735 8.0 6.0 4.7 6.6 5.7 7.0 6.3 5.7 7.3 NJ 735 8.0 6.0 4.7 6.6 5.7 7.0 6.3 5.7 7.3 NJ 735 8.0 6.0 4.7 6.6 5.7 7.0 6.3 5.7 7.3 NJ 735 8.0 6.0 4.7 6.6 5.7 7.0 6.3 5.7 7.3 Scort 8.3 4.3 4.0 6.5 6.7 8.0 5.3 4.0 7.3 Merion 9.0 7.3 5.7 6.4 6.3 7.7 </td <td>Plush</td> <td>7.3</td> <td>7.3</td> <td>5.0</td> <td>6.6</td> <td>5.3</td> <td>6.7</td> <td>7.0</td> <td>6.7</td> <td>7.3</td>	Plush	7.3	7.3	5.0	6.6	5.3	6.7	7.0	6.7	7.3
Touchdown7.75.36.06.66.78.05.75.06.0A20-69.04.03.36.66.78.04.35.06.7Columbia7.36.05.76.66.37.35.75.77.3NJ 7358.06.04.76.65.77.06.35.76.72398.36.35.76.66.77.05.36.07.0Escort8.34.34.06.56.78.05.34.07.3Merion9.07.35.76.46.36.76.06.3Adelphi8.36.35.76.46.36.76.06.3Merion9.07.35.76.46.36.76.06.3Adelphi8.36.35.76.46.36.76.06.3MW AG 4807.76.02.36.46.37.76.04.76.3Admiral8.35.35.06.46.37.05.75.36.3Mosa7.37.04.06.45.77.37.35.06.0Vanessa6.76.04.06.45.07.37.05.76.3	PSU-150	8.0	7.3	6.0	6.6	5.7	8.3	7.0	5.3	5.7
A20-6 9.0 4.0 3.3 6.6 6.7 8.0 4.3 5.0 6.7 Columbia 7.3 6.0 5.7 6.6 6.3 7.3 5.7 7.3 NJ 735 8.0 6.0 4.7 6.6 5.7 7.0 6.3 5.7 6.7 239 8.3 6.3 5.7 6.6 6.7 7.0 5.3 6.0 7.0 Escort 8.3 4.3 4.0 6.5 6.7 8.0 5.3 4.0 7.3 Merion 9.0 7.3 5.7 6.4 6.3 6.7 6.0 6.3 WW AG 480 7.7 6.0 2.3 6.4 6.3 7.7 6.0 6.3 WW AG 480 7.7 6.0 2.3 6.4 6.3 7.7 6.0 6.3 Mairal 8.3 6.7 6.0 6.4 5.7 7.3 6.3 6.0 6.3 Banff 8.3 5.3 5.0 6.4 6.3 7.0 5.7 5.3 6.3 <td>Touchdown</td> <td>7.7</td> <td>5.3</td> <td>6.0</td> <td>6.6</td> <td>6.7</td> <td>8.0</td> <td>5.7</td> <td>5.0</td> <td>6.0</td>	Touchdown	7.7	5.3	6.0	6.6	6.7	8.0	5.7	5.0	6.0
Columbia7.36.05.76.66.37.35.75.77.3NJ 7358.06.04.76.65.77.06.35.76.72398.36.35.76.66.77.05.36.07.0Escort8.34.34.06.56.78.05.34.07.3Merion9.07.35.76.56.76.06.36.06.3Adelphi8.36.35.76.46.36.76.06.3WW AG 4807.76.02.36.46.37.76.04.76.3Admiral8.36.76.06.45.76.36.06.37.3Banff8.35.35.06.46.37.05.75.36.3Waesa7.37.04.06.45.77.37.35.06.0	A20-6	9.0	4.0	3.3	6.6	6.7	8.0	4.3	5.0	6.7
NJ 735 8.0 6.0 4.7 6.6 5.7 7.0 6.3 5.7 6.7 239 8.3 6.3 5.7 6.6 6.7 7.0 5.3 6.0 7.0 Escort 8.3 4.3 4.0 6.5 6.7 8.0 5.3 4.0 7.3 Merion 9.0 7.3 5.7 6.5 6.7 6.0 6.3 6.0 6.3 Adelphi 8.3 6.3 5.7 6.4 6.3 6.7 6.0 6.3 WW AG 480 7.7 6.0 2.3 6.4 6.3 7.7 6.0 6.3 Admiral 8.3 6.7 6.0 6.4 5.7 6.3 6.0 6.3 Banff 8.3 5.3 5.0 6.4 6.3 7.0 5.7 5.3 6.3 Mosa 7.3 7.0 4.0 6.4 5.7 7.3 7.3 5.0 6.0 Vanessa 6.7 6.0 4.0 6.4 5.0 7.3 7.0 5.7	Columbia	7.3	6.0	5.7	6.6	6.3	7.3	5.7	5.7	7.3
239 8.3 6.3 5.7 6.6 6.7 7.0 5.3 6.0 7.0 Escort 8.3 4.3 4.0 6.5 6.7 8.0 5.3 4.0 7.3 Merion 9.0 7.3 5.7 6.5 6.7 8.0 6.3 6.0 6.3 Adelphi 8.3 6.3 5.7 6.4 6.3 6.7 6.0 6.3 6.0 6.3 WW AG 480 7.7 6.0 2.3 6.4 6.3 7.7 6.0 6.3 WW AG 480 7.7 6.0 2.3 6.4 6.3 7.7 6.0 6.3 Admiral 8.3 6.7 6.0 6.4 5.7 6.3 6.0 6.3 7.3 Banff 8.3 5.3 5.0 6.4 6.3 7.0 5.7 5.3 6.3 Mosa 7.3 7.0 4.0 6.4 5.7 7.3 7.3 5.0 6.0 Vanessa 6.7 6.0 4.0 6.4 5.0 7.3 <td>NJ 735</td> <td>8.0</td> <td>6.0</td> <td>4.7</td> <td>6.6</td> <td>5.7</td> <td>7.0</td> <td>6.3</td> <td>5.7</td> <td>6.7</td>	NJ 735	8.0	6.0	4.7	6.6	5.7	7.0	6.3	5.7	6.7
Escort 8.3 4.3 4.0 6.5 6.7 8.0 5.3 4.0 7.3 Merion 9.0 7.3 5.7 6.5 6.7 6.0 6.3 6.0 6.3 Adelphi 8.3 6.3 5.7 6.4 6.3 6.7 6.0 6.3 6.0 6.3 WW AG 480 7.7 6.0 2.3 6.4 6.3 7.7 6.0 6.3 Admiral 8.3 6.7 6.0 6.4 5.7 6.3 6.0 6.3 Banff 8.3 5.3 5.0 6.4 6.3 7.0 5.7 5.3 6.3 Mosa 7.3 7.0 4.0 6.4 5.7 7.3 7.3 5.0 6.0 Vanessa 6.7 6.0 4.0 6.4 5.0 7.3 7.0 5.7 6.3	239	8.3	6.3	5.7	6.6	6.7	7.0	5.3	6.0	7.0
Merion 9.0 7.3 5.7 6.5 6.7 6.0 6.3 6.0 6.3 Adelphi 8.3 6.3 5.7 6.4 6.3 6.7 6.3 6.0 6.3 WW AG 480 7.7 6.0 2.3 6.4 6.3 7.7 6.0 4.7 6.3 Admiral 8.3 6.7 6.0 6.4 5.7 6.3 6.0 6.3 Banff 8.3 5.3 5.0 6.4 6.3 7.0 5.7 5.3 6.0 6.3 7.3 Banff 8.3 5.3 5.0 6.4 6.3 7.0 5.7 5.3 6.3 Mosa 7.3 7.0 4.0 6.4 5.7 7.3 7.3 5.0 6.0 Vanessa 6.7 6.0 4.0 6.4 5.0 7.3 7.0 5.7 6.3	Escort	8.3	4.3	4.0	6.5	6.7	8.0	5.3	4.0	7.3
Adelphi 8.3 6.3 5.7 6.4 6.3 6.7 6.3 6.0 6.3 WW AG 480 7.7 6.0 2.3 6.4 6.3 7.7 6.0 4.7 6.3 Admiral 8.3 6.7 6.0 6.4 5.7 6.3 6.0 6.3 Banff 8.3 5.3 5.0 6.4 6.3 7.0 5.7 5.3 6.3 Mosa 7.3 7.0 4.0 6.4 5.7 7.3 7.3 5.0 6.0 Vanessa 6.7 6.0 4.0 6.4 5.0 7.3 7.0 5.7 6.3	Merion	9.0	7.3	5.7	6.5	6.7	6.0	6.3	6.0	6.3
WW AG 480 7.7 6.0 2.3 6.4 6.3 7.7 6.0 4.7 6.3 Admiral 8.3 6.7 6.0 6.4 5.7 6.3 6.0 6.3 7.3 Banff 8.3 5.3 5.0 6.4 6.3 7.0 5.7 5.3 6.3 Mosa 7.3 7.0 4.0 6.4 5.7 7.3 7.3 5.0 6.0 Vanessa 6.7 6.0 4.0 6.4 5.0 7.3 7.0 5.7 6.3	Adelphi	8.3	6.3	5.7	6.4	6.3	6.7	6.3	6.0	6.3
Admiral 8.3 6.7 6.0 6.4 5.7 6.3 6.0 6.3 7.3 Banff 8.3 5.3 5.0 6.4 6.3 7.0 5.7 5.3 6.3 Mosa 7.3 7.0 4.0 6.4 5.7 7.3 7.3 5.0 6.0 Vanessa 6.7 6.0 4.0 6.4 5.0 7.3 7.0 5.7 6.3	WW AG 480	7.7	6.0	2.3	6.4	6.3	7.7	6.0	4.7	6.3
Banff 8.3 5.3 5.0 6.4 6.3 7.0 5.7 5.3 6.3 Mosa 7.3 7.0 4.0 6.4 5.7 7.3 5.0 6.0 Vanessa 6.7 6.0 4.0 6.4 5.0 7.3 7.0 5.7 6.3	Admiral	8.3	6.7	6.0	6.4	5.7	6.3	6.0	6.3	7.3
Mosa 7.3 7.0 4.0 6.4 5.7 7.3 7.3 5.0 6.0 Vanessa 6.7 6.0 4.0 6.4 5.0 7.3 7.0 5.7 6.3	Banff	8.3	5.3	5.0	. 6.4	6.3	7.0	5.7	5.3	6.3
Vanessa 6.7 6.0 4.0 6.4 5.0 7.3 7.0 5.7 6.3	Mosa	7.3	7.0	4.0	6.4	5.7	7.3	7.3	5.0	6.0
	Vanessa	6.7	6.0	4.0	6.4	5.0	7.3	7.0	5.7	6.3

Table 1. Evaluation of Kentucky bluegrass cultivars during the 1983 growing season - Urbana.

(continued)

	Pythium ²	Dollar	Spring	Quality		(Quality	5	
		Spot ²	Greenup	All					
Cultivar	4/8	7/25	3/15	Dates*	5/6	6/7	7/21	8/30	9/22
Kimono	8.7	5.3	3.7	6.3	5.3	8.3	6.0	4.7	6.0
Parade	8.7	7.0	6.0	6.3	5.7	6.7	6.3	5.7	6.7
A-34	6.3	6.0	5.3	6.3	6.3	6.3	6.3	5.7	6.3
Ram 1	6.3	5.7	6.3	6.3	6.3	8.0	6.0	3.3	6.0
Baron	9.0	7.0	4.7	6.2	5.0	6.3	7.3	6.3	6.3
Birka	5.7	7.3	5.3	6.2	6.0	8.3	6.3	3.7	5.3
Sydsport	7.0	5.0	3.0	6.2	6.3	7.7	5.7	4.3	5.7
1528T	8.3	6.7	4.3	6.2	4.7	7.0	7.3	6.0	6.7
Bonnieblue	8.7	5.7	6.7	6.2	6.3	7.0	6.0	4.3	6.0
MLM-18011	8.3	7.3	5.7	6.2	5.7	6.3	6.7	5.3	6.3
Bayside	7.3	6.7	4.3	6.1	6.3	6.3	6.0	5.7	6.0
America	6.3	5.0	4.7	6.1	5.7	6.7	5.3	6.0	6.3
Bono	6.3	6.3	6.0	6.1	6.0	7.7	6.7	3.3	5.0
Cheri	7.7	6.7	3.3	6.1	5.0	7.0	6.0	5.3	6.3
Fylking	8.3	6.3	5.0	6.1	6.0	7.3	6.3	3.7	5.3
Glade	5.7	7.0	5.7	6.1	5.3	7.7	6.7	4.7	5.7
K1-152	8.3	6.0	5.0	6.1	5.3	7.0	5.7	5.0	6.3
Mer PP 300	9.0	6.7	4.0	6.0	4.3	6.7	6.7	5.7	5.7
N535	9.0	5.7	6.0	6.0	5.0	7.0	6.3	4.3	5.7
Victa	9.0	7.3	4.0	6.0	4.3	6.7	7.0	6.0	6.3
Majestic	8.0	5.3	6.0	5.9	5.0	7.3	5.7	5.0	6.3
SV-01617	8.3	6.3	4.7	5.9	6.3	7.7	6.0	3.3	5.3
Bristol	8.0	6.0	5.7	5.9	5.0	6.7	5.7	5.3	6.3
Geronimo	8.0	5.7	4.3	5.9	6.0	7.0	5.7	4.3	5.7
PSU-190	7.7	5.7	5.7	5.9	6.3	7.3	5.7	3.3	5.0
WW AG 478	6.3	5.7	5.0	5.8	4.3	7.0	7.3	3.7	7.0
Merit	9.0	6.3	4.7	5.8	4.3	7.0	6.3	5.0	6.0
BA-61-91	9.0	6.7	4.0	5.7	4.7	6.7	6.7	5.0	6.0
Aspen	8.3	5.0	6.0	5.7	4.7	6.3	5.3	5.0	6.3
Enoble	8.0	5.7	3.0	5.6	4.3	6.0	5.3	5.0	5.7
Holiday	8.0	5.0	4.7	5.6	4.7	6.7	5.0	5.0	5.7
Apart	8.0	5.7	5.0	5.5	5.3	6.0	6.0	4.0	5.0
Welcome	8.0	5.0	5.7	5.5	4.3	7.7	6.0	3.3	5.3
Lovegreen	5.3	5.0	4.0	5.4	6.0	7.7	6.0	2.0	3.3
Piedmont	4.7	7.3	6.0	5.4	5.0	4.3	6.3	5.7	6.7

Table 1. Evaluation of Kentucky bluegrass cultivars during the 1983 growing season - Urbana (continued).¹

(continued)

	Pythium ²	Dollar Spot ²	Spring Greenup ³	Quality All		(Quality	5	
Cultivar	4/8	7/25	3/15	Dates ⁴	5/6	6/7	7/21	8/30	9/22
Mystic (P141)	5.0	5.3	6.7	5.4	4.3	7.0	5.7	3.3	6.0
Vantage	5.0	6.3	5.3	5.4	5.0	4.3	6.3	5.3	6.0
Wabash	3.0	7.3	5.3	5.4	3.7	3.3	6.3	7.3	7.3
K3-162	4.3	6.7	6.3	5.3	6.0	4.0	6.0	5.0	6.0
243	8.0	6.7	6.3	5.2	4.3	6.0	5.3	4.7	5.7
Argyle	5.3	6.7	6.3	5.2	5.0	4.7	5.7	5.7	4.7
Harmony	5.0	4.7	5.3	5.2	4.7	6.7	5.0	3.3	5.0
MER PP 43	8.3	5.0	6.3	5.2	5.3	6.7	5.0	3.0	4.3
Charlotte	8.7	4.7	4.3	5.1	4.7	7.3	4.7	3.0	3.3
Nugget	7.3	3.3	2.7	5.0	5.0	6.7	3.7	3.3	5.3
Dormie	8.7	4.3	6.3	4.7	5.3	6.3	4.3	3.0	3.3
S.D. Common	4.3	7.0	6.3	4.5	5.0	4.0	6.0	3.3	4.3
Kenblue	3.7	5.3	6.7	4.3	4.0	3.0	5.0	5.0	4.7
S-21	5.3	6.3	6.3	4.3	4.7	3.7	5.7	3.7	3.0
LSD	1.5	1.7	1.3	0.8	1.2	1.1	1.4	1.4	1.3

Table 1. Evaluation of Kentucky bluegrass cultivars during the 1983 growing season - Urbana (continued).

¹All values represent the mean of 3 replications.

²Disease evaluations are made on a 1-9 scale where 9 = no visible evidence of disease and 1 = complete necrosis.

³Spring greenup evaluations are made on a 1-9 scale, where 9 = very dark turf color and 1 = dormant turfgrass.

⁴Values represent the mean of 15 scores obtained from 3 replications and 5 evaluation dates.

 5 Quality evaluations are made on a 1-9 scale where 9 = excellent turfgrass quality and 1 = very poor turfgrass quality.

	Spring	Quality		Quality ⁴							
Cultivar	3/17	Dates ³	4/13	5/11	6/9	7/12	8/16	9/13	10/10		
к1-152	4.7	6.9	6.0	5.3	7.0	6.7	7.7	7.3	8.3		
Enoble	4.0	6.6	5.3	4.7	7.3	6.7	7.3	7.7	7.3		
Baron	4.0	6.5	5.7	5.0	6.7	5.7	7.3	8.0	7.3		
Cheri	3.3	6.5	5.3	4.7	7.0	6.3	7.7	7.3	7.0		
Monopoly	5.0	6.5	5.7	5.0	7.3	6.7	7.3	6.7	6.7		
Sydsport	3.0	6.5	5.3	5.3	7.0	6.7	8.0	7.0	6.0		
A20-6	4.3	6.4	5.3	4.7	7.3	6.0	7.7	7.0	7.0		
225	5.3	6.4	5.7	5.0	7.0	6.0	6.7	7.0	7.7		
Adelphi	4.0	6.3	5.7	4.3	6.7	5.3	6.7	7.7	7.7		
Escort	3.7	6.3	5.3	5.0	6.7	6.3	8.3	6.3	6.0		
Merit	3.0	6.3	5.3	4.0	6.0	6.0	8.0	7.7	7.0		
Trenton	4.0	6.3	5.7	4.7	6.3	6.0	7.3	6.7	7.3		
WW AG 480	4.0	6.3	5.0	4.7	7.0	7.0	8.0	5.3	7.0		
A-34	3.7	6.2	5.0	4.0	6.7	6.3	7.0	7.0	7.7		
Shasta	4.3	6.2	5.3	4.0	6.0	5.7	7.3	7.7	7.7		
WW AG 463	4.3	6.2	5.7	4.3	7.3	6.0	6.7	6.7	7.0		
Merion	4.3	6.1	5.7	4.7	6.0	6.3	7.0	6.7	6.7		
Banff	4.0	6.1	5.0	4.3	6.7	5.7	6.3	7.0	7.7		
Birka	4.7	6.1	5.7	4.3	6.3	5.3	6.7	7.3	7.0		
Mosa	3.3	6.1	5.3	3.7	6.3	5.7	6.7	7.7	7.3		
America	4.3	6.0	5.0	4.3	6.3	5.3	7.3	7.0	7.0		
Columbia	4.7	6.0	5.3	4.0	6.3	6.0	6.7	7.0	7.0		
Mona	4.3	6.0	5.0	5.0	6.7	5.3	6.0	7.0	7.3		
Plush	4.3	6.0	5.0	3.7	6.0	5.7	7.7	7.3	7.0		
PSU-173	3.7	6.0	5.0	3.7	6.3	5.7	7.3	6.7	7.7		
Vanessa	2.3	6.0	5.0	4.0	6.3	6.7	7.3	6.7	6.3		
Aspen	3.7	6.0	5.0	4.0	6.3	5.3	7.0	7.3	7.0		
Holiday	3.0	6.0	5.0	4.3	6.0	5.3	6.3	7.3	7.7		
Nugget	3.7	6.0	5.3	3.7	6.0	5.7	7.0	7.3	7.0		
Parade	4.3	6.0	5.3	4.3	5.3	5.3	7.0	7.3	7.3		
PSU-190	3.3	6.0	5.0	4.0	6.3	6.7	5.7	7.0	7.3		
Welcome	4.0	6.0	5.3	3.0	7.0	6.0	6.7	7.0	7.0		
1528T	3.0	6.0	5.3	4.0	6.3	5.3	6.3	7.3	7.3		
H-7	4.3	6.0	5.0	4.3	6.0	5.7	6.3	7.0	7.3		
K3-178	4.0	6.0	5.0	4.3	6.7	5.3	6.0	7.3	7.0		

Table 2. Evaluation of Kentucky bluegrass cultivars during the 1983 growing season - Kilbourne.¹

(continued)

	Spring	Quality				Quality	y 4		
Cultivar	3/17	Dates ³	4/13	5/11	6/9	7/12	8/16	9/13	10/10
SH-2	5.0	6.0	5.3	4.3	6.7	6.0	6.0	6.7	6.7
A20-6A	4.3	5.9	5.3	5.0	6.0	5.3	5.7	6.3	7.7
CEB VB 3965	4.0	5.9	5.0	4.3	5.7	5.7	6.7	7.0	7.0
Ram 1	5.3	5.9	5.7	5.0	6.3	6.3	6.3	6.0	5.7
SV-01617	3.7	5.9	5.7	4.3	6.7	6.0	6.0	6.7	6.0
Victa	3.7	5.9	4.3	3.7	4.7	5.3	7.7	8.0	7.7
Eclipse	4.0	5.9	5.0	4.0	6.0	5.0	6.3	7.3	7.3
I-13	4.0	5.9	5.3	4.0	6.3	5.0	5.7	7.0	7.7
Kimono	2.7	5.9	4.7	4.7	7.0	5.7	6.7	6.7	5.7
Rugby	4.7	5.9	5.3	4.3	6.3	5.3	5.7	7.3	6.7
239	4.3	5.9	5.0	4.3	6.0	5.7	6.0	7.0	7.0
Bayside	4.3	5.8	5.3	4.0	5.7	5.7	5.3	7.7	7.0
PSU-150	4.0	5.8	4.3	3.3	6.7	5.7	7.0	6.7	7.0
Bono	3.7	5.8	5.3	4.0	6.3	5.3	6.3	6.0	7.0
Majestic	4.7	5.8	5.3	4.3	5.7	5.3	5.3	7.3	7.0
Admiral	5.0	5.7	5.0	4.3	6.0	4.7	5.7	6.7	7.7
Bonnieblue	4.3	5.7	4.7	4.0	6.0	5.3	7.0	6.7	6.3
Bristol	4.7	5.7	5.3	4.7	5.7	5.3	6.7	6.0	6.3
Geronimo	4.3	5.7	5.7	3.7	6.0	6.0	6.3	6.7	5.7
Enmundi	4.3	5.7	4.7	3.3	6.3	5.7	5.7	7.3	6.7
Fylking	2.7	5.7	4.7	3.7	6.0	6.0	6.7	6.3	6.3
кз-179	4.0	5.7	5.0	3.0	6.3	5.3	5.7	7.3	7.0
MLM-18011	4.3	5.7	5.3	3.3	5.7	5.3	6.0	6.7	7.3
Touchdown	3.0	5.7	5.0	3.7	6.3	5.7	6.7	6.3	6.0
Lovegreen	3.0	5.6	5.0	3.7	6.7	6.7	6.0	7.0	4.3
MER PP 300	3.7	5.6	5.3	4.0	5.0	5.0	6.3	6.7	7.0
A20	3.7	5.6	5.3	4.3	5.3	5.3	5.7	6.3	6.7
Piedmont	3.0	5.6	5.0	3.7	4.7	5.3	6.3	7.3	6.7
Wabash	4.7	5.6	5.3	3.3	6.3	4.0	5.7	6.7	7.7
BA-61-91	3.0	5.5	5.0	4.0	4.7	4.3	6.3	7.3	7.0
Glade	4.0	5.5	5.0	4.0	6.0	4.7	5.3	6.7	6.7
Apart	4.0	5.4	5.0	3.7	5.7	5.0	5.7	6.7	6.3
Cello	4.0	5.4	5.0	4.0	5.3	5.0	5.0	6.7	6.7
NJ 735	3.7	5.3	4.7	4.0	5.0	5.0	5.3	7.0	6.0
N535	4.3	5.3	5.3	4.0	5.7	5.0	3.3	6.3	7.3

Table 2. Evaluation of Kentucky bluegrass cultivars during the 1983 growing season - Kilbourne (continued).¹

(continued)

	Spring Quality		Quality ⁴								
Cultivar	3/17	Dates ³	4/13	5/11	6/9	7/12	8/16	9/13	10/10		
Mustic (P141)	4.7	5.2	4.3	3.0	4.3	5.0	6.0	7.0	7.0		
243	5.0	5.2	5.3	4.3	5.0	5.0	5.3	6.3	5.3		
MER PP 43	4.0	5.1	4.7	3.3	5.3	4.7	4.0	7.7	6.0		
Barblue	5.7	5.0	5.3	3.3	6.0	4.7	4.3	5.7	6.0		
Vantage	4.7	5.0	5.0	3.0	4.7	5.3	5.7	6.7	5.0		
Harmony	3.3	5.0	4.7	3.3	5.3	4.0	5.0	7.0	5.7		
Dormie	3.7	4.8	5.0	3.0	5.0	4.0	5.0	5.7	6.3		
S.D. Common	5.0	4.6	5.0	3.0	4.3	4.3	4.7	5.3	5.7		
WW AG 478	2.3	4.6	4.7	3.0	5.7	4.7	4.3	5.3	4.7		
к3-162	4.7	4.6	4.7	3.0	4.7	3.7	3.3	6.7	6.0		
Argyle	3.3	4.4	4.7	3.3	4.3	4.0	3.3	6.3	5.0		
Charlotte	3.0	4.3	5.0	3.7	5.3	4.7	3.0	4.7	4.0		
S-21	4.0	4.1	4.3	2.7	4.0	4.0	4.7	5.7	3.3		
Kenblue	3.7	3.5	4.0	2.3	2.7	2.7	2.7	5.0	5.0		
LSD	1.4	0.9	0.9	0.9	1.3	1.3	2.3	1.4	1.8		

Table 2. Evaluation of Kentucky bluegrass cultivars during the 1983 growing season - Kilbourne (continued).¹

¹All values represent the mean of 3 replications.

²Spring greenup evaluations are made on a 1-9 scale, where 9 = very dark turf color and 1 = dormant turfgrass.

³Values represent the mean of 21 scores obtained from 3 replications and 7 evaluation dates.

⁴Quality evaluations are made on a 1-9 scale where 9 = excellent turfgrass quality and 1 = very poor turfgrass quality.

USDA NATIONAL PERENNIAL RYEGRASS CULTIVAR EVALUATION

J. E. Haley, T. W. Fermanian, and D. J. Wehner

INTRODUCTION

In the past, perennial ryegrass has been included in seed mixtures as a temporary lawn or nursegrass. In Illinois, deterioration during the summer months has prevented perennial ryegrass from becoming an important permanent turfgrass. Improved varieties with better color, density, mowing quality, and disease resistance have challanged the traditional image of perennial ryegrass. The turf program at the University of Illinois is participating in a USDA national perennial ryegrass test. This nationwide test will evaluate the performance of perennial ryegrass cultivars under a broad range of climate and cultural programs.

METHODS AND MATERIAL

The Urbana trial, established September 8, 1982, includes 50 perennial ryegrass cultivars, some that are experimental and other that are commercially available (Table 1). Plots measure 5 x 6 feet and each cultivar is replicated 3 times. All plots are mowed at 2.0 inches and receive 4 lb N/1000 sq ft/year. The ryegrass is irrigated as needed to prevent wilt.

RESULTS

Early spring density evaluations reflect turf resistance to cool weather pythium and injury from winter stress. Density, for most cultivars, was generally poor to fair with Gator, Blazer, NK80389, Fiesta, and Manhattan/Blazer being the most dense. Cultivars performed the best in spring and fall with the highest quality observed in November. Although the plots were irrigated, several cultivars performed very poorly during drouth stressed August. They include Elka, Cupido, Pippin and Linn.

	Density	2 Quality			Qu	ality ⁴		
Cultivar	4/7	Dates ³	5/6	6/10	7/15	8/22	9/22	11/21
Palmer	5.0	7.2	7.0	6.0	6.7	6.3	8.0	9.0
GT II	5.3	7.1	6.3	7.0	6.7	6.0	7.7	9.0
BT I	4.7	7.0	6.3	6.7	6.7	5.7	7.7	9.0
Prelude	5.3	7.0	7.0	6.0	6.7	6.0	7.3	9.0
Fiesta	5.7	6.9	7.0	6.0	6.7	5.7	7.7	8.7
Gator	6.0	6.8	7.0	7.0	6.0	5.7	7.0	8.3
Premier	5.3	6.8	7.0	5.7	6.3	6.0	7.7	8.3
Blazer	5.7	6.8	6.7	6.7	6.3	5.7	7.0	8.3
Prelude/Blazer	5.7	6.7	6.7	5.7	6.0	5.7	7.7	8.7
SWRC-1	4.0	6.7	5.7	7.0	6.0	6.0	7.3	8.3
Derby	4.7	6.7	6.7	6.0	7.0	5.7	7.0	7.7
Yorktown	5.0	6.7	6.7	7.0	6.0	5.3	6.3	8.7
Manhattan	5.3	6.6	7.0	7.0	6.0	4.7	6.3	8.7
282	5.0	6.6	7.0	6.0	6.7	5.0	6.7	8.3
Fiesta/	5.0	6.6	6.0	6.3	6.7	5.3	6.7	8.3
Manhattan II								
HR-1	4.7	6.6	6.0	6.0	6.0	5.7	7.7	8.0
Ranger	5.3	6.6	6.0	6.3	5.7	5.0	7.3	9.0
Diplomat	3.7	6.5	6.0	6.7	5.7	5.3	7.0	8.3
LP 702	4.7	6.5	5.7	8.0	6.3	5.0	5.3	8.7
M382	4.3	6.5	5.7	7.0	5.0	5.7	7.0	8.7
Barry	4.0	6.4	5.3	7.7	5.3	5.0	6.7	8.7
Manhattan II/ Blazer	5.7	6.4	6.3	7.0	6.0	5.3	6.3	7.7
Elka	4.7	6.3	6.0	8.0	5.0	3.7	7.0	8.0
Dasher	4.3	6.2	6.3	6.0	6.0	6.0	5.7	7.3
IA 728	4.0	6.2	5.7	6.0	5.7	6.0	6.7	7.3
Omega	4.0	6.2	5.7	6.3	5.3	5.3	6.7	8.0
2ED	3.7	6.2	6.0	5.6	6.0	5.7	6.3	7.7
NK 80389	6.0	6.1	6.3	7.3	5.3	4.0	5.3	8.0
Manhattan II	4.0	6.0	5.3	6.3	5.7	4.7	5.3	8.7
NK 79307	3.3	6.0	5.0	5.7	6.7	5.7	6.0	7.0

Table 1. Evaluation of perennial ryegrass cultivars during the 1983 growing season.¹

(continued)

	Density ²	Quality		Quality ⁴							
Cultivar	4/7	Dates ³	5/6	6/10	7/15	8/22	9/22	11/21			
LP 792	3.0	5.9	5.3	6.3	5.0	4.3	6.3	8.0			
2EE	3.0	5.8	4.7	5.3	5.3	5.0	6.7	7.7			
Regal	3.7	5.7	5.3	5.7	5.7	5.7	5.3	6.7			
WWE 19	5.0	5.7	6.3	6.3	5.3	4.0	5.7	6.7			
Cockade	4.3	5.7	5.3	7.0	5.3	4.3	5.0	7.0			
Pennant	3.3	5.7	5.0	6.3	5.3	4.7	5.3	7.3			
HE168	2.0	5.6	3.3	7.3	4.3	5.0	6.3	7.3			
NK 79309	4.0	5.4	5.0	5.3	5.7	5.0	5.0	6.3			
Pennfine	2.7	5.4	4.3	5.0	4.7	5.3	6.3	6.7			
Delray	3.0	5.3	3.7	5.0	5.0	4.7	6.7	7.0			
Cupido	3.3	5.3	5.0	7.3	4.7	3.7	4.0	7.0			
LP 736	2.7	5.3	3.7	6.3	4.7	4.7	5.3	7.0			
Citation	2.7	5.2	4.0	4.7	5.0	4.7	6.0	7.0			
HE178	2.3	5.2	3.0	6.0	4.7	4.7	6.0	7.0			
LP 210	3.7	5.2	5.7	6.3	4.0	3.0	5.0	7.3			
Cigil	2.7	5.2	3.0	7.3	4.3	4.7	5.0	6.7			
Acclaim	3.0	5.1	4.3	5.3	4.3	4.3	5.7	6.3			
Crown	2.0	4.8	3.7	5.3	4.0	4.7	5.0	6.3			
Pippin	3.3	4.7	4.0	7.0	4.3	2.7	4.0	6.3			
Linn	2.0	3.3	3.0	3.0	3.3	2.7	3.0	5.0			
LSD	1.2	0.5	1.2	0.8	1.0	1.0	1.6	0.9			

Table 1. Evaluation of perennial ryegrass cultivars during the 1983 growing season (continued).¹

¹All values represent the mean of 3 replications.

²Density evaluations are made on a 1-9 scale, where 9 = very dense turf and 1 = low turfgrass density.

³Values represent the mean of 18 scores obtained from 3 replications and 6 evaluation dates.

⁴Quality evaluations are made on a 1-9 scale where 9 = excellent turfgrass quality and 1 = very poor turfgrass quality.

USDA NATIONAL FINE FESCUE CULTIVAR EVALUATION

T. W. Fermanian, J. E. Haley, and D. J. Wehner

INTRODUCTION

Fine fescue is a term that generally is used to refer to several fine leaf turfgrasses of the Festuca genus. Fine fescues include red or creeping fescue (Festuca rubra), chewings fescue (Festuca rubra var. commutata), sheeps fescue (Festuca ovina) and hard fescue (Festuca oving var. duriuscula). Red fescue does well as a turfgrass under shade and has a stoloniferous habit. Chewings, sheeps and hard fescue do well in sunny dry areas as low maintenance turfs. These fescues have a bunch type growth habit. New cultivars have been developed to improve the adaptibility and quality of the fineleaf fescues. The University of Illinois turf program is participating in the USDA national fineleaf fescue test. This test evaluates the performance of 47 cultivars of creeping red, chewings, sheep, and hard fescue in central Illinois. Identical tests have been established at other universities nationawide to examine the cultivars under a broad range of climates and cultural programs.

METHODS AND MATERIALS

The Urbana trial, established September 27, 1983, includes 47 fineleaf fescue cultivars, some that are experimental and others that are commercially available (Table 1). Plots measure 5 x 6 feet and each cultivar is replicated 3 times. Plots were seeded at 3.6 lb seed per 1000 sq ft (50 grams seed/30 sq ft). Prior to seeding the area was fertilized with 1 lb N/1000 sq ft. The seeded area was covered with a straw mulch that was removed when the seedlings emerged. Over the years the plots will be evaluated for quality, disease resistance, density, cold tolerance and drouth tolerance.

Table 1. USDA fineleaf fescue cultivars.

Chewings fescue		
Atlanta	Epsom	Magenta
Banner	HF 9-3	Mary
Beauty	Highlight	Shadow
Center	Ivalo	Tamara
CF-2	Jamestown	Tatjana
Checker	Koket	Waldorf
Enjoy	Longfellow	Wilma
Creeping red fescue		
Boreal	Flyer	Robot
Ceres	Logro	Ruby
Commodore	Lovisa	Wintergreen
Ensylva	Pennlawn	430

Hard fescue

Estica

Aurora	Reliant	ST-2
BAR Fo 81-225	Scaldis	Valda
Biljart	Spartan	Waldina

Pernille

Sheeps fescue 4LS

Unknown fescue species FRI-Frt 83-1

entry no. 47

TALL FESCUE CULTIVAR EVALUATION UNDER TWO MAINTENANCE LEVELS

T. W. Fermanian, J. E. Haley, and D. J. Wehner

INTRODUCTION

In Illinois, tall fescue (<u>Festuca</u> <u>arundinacea</u>) is primarily used on low maintenance sites as roadways and playgrounds. Tall fescue has excellent heat, drouth and wear tolerance but a coarse texture prevents its use in areas where a high quality turf is needed and a bunch type growth habit prevents its use in mixtures with other turf species. The susceptibility of tall fescue to low temperature injury reduces its use outside the transition zone. Improved "turf" type tall fescue cultivars with finer texture and improved cold tolerance have recently been introduced.

MATERIAL AND METHODS

In order to examine the performance of these "turf" type tall fescue cultivars, an evaluation trial was established in Urbana, September 20, 1982. The trial contains 22 "turf type" tall fescue cultivars (experimental and commercially available), one "forage type" (K-31), five tall fescue-Kentucky bluegrass mixes, two tall fescue-perennial ryegrass mixes and one tall fescue blend (Table 1). Plot size is 5 x 6 feet and each cultivar is replicated three times. The trial is duplicated in order to evaluate the cultivars at two levels of cultural maintenance. Under maintenance level I, the turf is not irrigated. It is fertilized only once in the fall with 1 lb N/1000 sq ft. Under maintenance level II, the turf is irrigated and fertilized four times per year with 1 lb N/1000 sq ft. All turf is maintained at 2.5 inch height of cut.

RESULTS

Despite high temperatures and drouthy conditions tall fescue performance was good for those cultivars maintained without irrigation (Table 1). The exceptions to this were the tall fescue-perennial ryegrass mixes. Quality was highest during June and July and deteriorated only slightly in the fall. In general, the tall fescue cultivars grown under this low maintenance level were not as severely affected by cool weather pythium as those with higher nitrogen fertilization and irrigation. Cultivars susceptible to pythium under a high maintenance program were SYN GA, Clemfine, Clemfine/Olympic, K-31, and K-82142 (Table 2). Plots maintained with irrigation and high fertilization exhibited excellent quality throughout the summer, although there was a slight decline in performance in August.

	Pythium	Quality			Qua	lity ⁴		
Cultivar	4/7	Dates ³	5/12	6/10	7/11	8/19	9/30	11/21
5 M4-82	7.7	7.4	7.0	8.0	8.0	7.7	8.0	6.0
Jaguar	7.7	7.4	6.7	8.3	8.0	7.3	7.7	6.3
K 82142	6.0	7.2	6.3	8.0	8.0	7.7	7.0	6.0
Olympic + 5% PST 483	7.7	7.2	6.7	8.0	7.7	7.0	7.7	6.0
К 79628	5.0	7.1	7.0	7.7	8.0	7.3	7.0	5.7
Rebel/Bonnieblue	7.3	7.1	6.0	8.0	7.7	7.7	7.0	6.3
Rebel/Newport	7.3	7.0	6.7	8.3	8.0	7.0	6.7	5.3
52 H	7.7	7.0	6.3	8.7	7.0	7.0	7.0	6.0
Marathon	7.3	6.9	7.0	7.7	7.3	6.7	7.3	5.7
Mustang	7.7	6.9	6.0	8.3	7.7	7.0	6.7	6.0
Rebel/Baron	7.0	6.9	6.3	7.7	8.0	6.7	7.0	6.0
SYN GA	6.7	6.9	6.7	7.7	7.7	7.0	7.0	5.7
Falcon	8.0	6.9	5.7	8.0	8.0	6.7	7.3	5.7
Olympic + 10% PST 483	7.3	6.8	6.7	7.7	7.7	6.7	6.7	5.7
Rebel	7.3	6.8	6.0	7.3	7.7	6.0	7.3	6.3
52 W	8.3	6.7	6.7	8.3	7.3	6.7	6.3	5.0
Clemfine	6.0	6.7	5.7	7.3	7.3	7.0	7.0	5.7
Clemfine/Olympic	6.7	6.7	5.7	7.3	7.3	7.0	7.0	5.7
Olympic	7.7	6.7	6.0	7.7	7.0	6.3	7.3	5.7
Brookston	8.0	6.6	6.3	7.0	7.0	7.0	6.7	5.3
Galway	7.0	6.6	6.7	7.3	7.0	6.0	6.7	5.7
Houndog	6.3	6.6	6.0	7.0	7.3	7.0	6.7	5.3
ISI BK 2	6.7	6.5	5.7	7.0	7.0	6.7	7.0	5.7
TF805	8.0	6.4	6.0	7.7	7.0	6.3	6.3	5.3
K-31	6.0	6.3	6.0	7.3	7.0	7.0	6.0	4.7
NK 81452	7.3	6.3	6.0	8.0	7.0	5.7	6.3	5.0
Barcel	7.0	6.1	5.3	6.3	7.0	5.7	6.3	5.7
Rebel/Blazer	7.7	5.9	7.3	6.3	5.0	4.3	5.0	7.7
Rebel/Fiesta	7.3	5.8	7.7	6.3	5.0	3.0	5.0	8.0
BEL SYN 22	7.7	5.7	4.0	6.0	6.3	6.0	6.7	5.0
NK 81453	8.3	5.4	6.7	7.0	5.0	2.7	4.3	7.0
LSD	1.6	0.5	1.0	0.8	0.6	1.3	0.8	1.1

Table 1. Evaluation of tall fescue cultivars maintained with no irrigation and low fertilization.

¹All values represent the mean of 3 replications.

²Pythium evaluations are made on a 1-9 scale where 9 = no visible evidence of disease and 1 = complete necrosis.

³Values represent the mean of 18 scores obtained from 3 replications and 6 evaluation dates.

⁴Quality evaluations are made on a 1-9 scale where 9 = excellent turfgrass quality and 1 = very poor turfgrass quality.

	Pythium	Quality			Qua	lity ⁴		
Cultivar	4/7	Dates ³	5/12	6/10	7/11	8/19	9/30	11/21
Jaguar	5.0	8.1	7.3	8.7	8.3	6.3	9.0	9.0
5 M4-82	6.3	7.9	8.0	8.0	7.3	7.0	8.7	8.7
Falcon	4.3	7.9	7.0	8.3	8.0	7.3	8.7	8.0
Rebel	4.3	7.9	7.0	9.0	7.7	6.7	8.7	8.3
Rebel/Baron	5.7	7.9	6.7	8.0	7.7	7.3	8.7	9.0
Olympic + 5% PST 483	5.3	7.8	7.0	8.0	8.0	6.7	8.3	9.0
Rebel/Bonnieblue	5.3	7.8	6.7	8.0	7.7	6.7	9.0	9.0
Olympic + 10% PST 483	4.3	7.8	7.0	8.7	8.0	6.3	8.0	8.7
Rebel/Newport	4.7	7.8	6.7	7.7	8.3	6.3	9.0	8.7
Mustang	5.3	7.7	7.3	8.7	7.3	6.0	8.7	8.3
52 W	6.3	7.7	7.0	9.0	7.7	5.7	8.7	8.3
Houndog	4.7	7.6	7.0	8.0	7.3	6.7	8.0	8.3
Clemfine/Olympic	2.7	7.5	7.3	8.0	7.3	7.0	7.0	8.3
SYN GA	3.7	74	6.7	8.0	7.3	6.7	7.7	8.3
Clemfine	3.3	7.4	6.7	8.3	7.7	7.0	7.3	7.3
к 79628	4.0	7.4	6.7	8.3	7.0	6.3	7.3	8.7
Olympic	6.7	7.4	6.3	8.3	7.3	6.3	7.7	8.3
Rebel/Blazer	4.3	7.3	7.0	6.0	6.3	6.7	9.0	9.0
TF805	5.0	7.3	7.0	8.3	7.3	5.3	7.7	8.3
52 H	5.0	7.3	6.7	7.7	8.0	6.3	7.3	8.0
K-31	2.7	7.3	7.0	7.7	7.7	6.3	7.3	7.7
Marathon	6.3	7.3	7.0	7.0	7.3	6.3	8.0	8.0
Brookston	6.3	7.2	7.3	7.3	7.0	5.3	7.7	8.7
Galway	4.3	7.2	6.7	7.7	7.7	6.3	7.0	8.0
ISI BK 2	4.7	7.2	6.7	7.3	7.3	5.3	8.0	8.7
NK 81452	4.0	7.2	7.0	8.0	7.3	6.3	6.7	7.7
K 82142	3.7	7.1	6.7	7.7	8.0	5.7	7.0	7.7
Rebel/Fiesta	6.3	7.0	7.3	5.7	6.0	6.0	8.7	8.7
Barcel	5.7	6.5	6.0	6.3	6.7	5.3	7.0	7.7
BEL SYN 22	5.7	5.9	4.3	6.7	5.3	4.3	7.3	7.7
NK 81453	7.7	4.6	6.3	4.3	5.0	3.0	3.0	5.7
LSD	2.1	0.4	0.9	1.1	0.9	1.3	1.1	1.0

Table 2. Evaluation of tall fescue cultivars maintained with irrigation and high fertilization.¹

All values represent the mean of 3 replications.

 2 Pythium evaluations are made on a 1-9 scale where 9 = no visible evidence of disease and 1 = complete necrosis.

³Values represent the mean of 18 scores obtained from 3 replications and 6 evaluation dates.

⁴Quality evaluations are made on a 1-9 scale where 9 = excellent turfgrass quality and 1 = very poor turfgrass quality.

REGIONAL CULTIVAR EVALUATION

T. W. Fermanian and J. E. Haley

INTRODUCTION

Turfgrass cultivar recommendations in Illinois are generally made from data obtained from turfgrass evaluation trials at the Urbana or Kilbourne research facilities. However, Illinois is a state over 400 miles long, with a wide range of temperatures, precipitation and soil conditions. A cultivar suited to central Illinois may not be suited to northern or southern Illinois. With this in mind, cultivar evaluation trials were established in Rock Island County, September 10, 1981 and DuPage County, September 23,1981. Cultivars established at these sites are as follows:

Kentucky bluegrass

Mystic	Victa
Parade	WTN-A20
Ram I	WTN-A-34
Rugby	WTN-H7
Shasta	WTN-I13
Sydsport	
 Touchdown	
	Mystic Parade Ram I Rugby Shasta Sydsport Touchdown

Perennial ryegrass

Blazer Dasher Diplomat Fiesta

Tall fescue Falcon K-31

Fine fescue

Agram Biljart Mustang Olympic

Goalie

Loretta

Manhattan

Lesco's CBS blend

Rebel Shannon

Pennant

Pennfine

Premier

Yorktown

Jamestown Pennlawn Scaldis Waldina

RESULTS

In Rock Island the quality of Kentucky bluegrass cultivars improved throughout the summer and was highest in July and October. September quality was lower than expected because plants were recovering from drouth stress in August (Table 1). Helminthosporium leaf spot was a problem with some varieties in April. Those cultivars which showed the greatest resistance to the disease were WTN-A20, WTN-H7 and WTN-I13. Most of the perennial ryegrass cultivars retained some color during August and did not appear to be severely affected by the summer drouth. Ryegrass quality improved throughout July and remained good through October.

The tall fescue cultivars exhibited good to excellent quality throughout the season, although the performance of K-31 and Shannon was generally not as high as the other cultivars tested. Of all the species evaluated, the tall fescue varieties were the most drouth tolerant. They showed excellent resistance to leaf spot.

In 1983 the performance of the fineleaf fescues was only fair. These cultivars did not recover as rapidily from drouth stress as did the other species. The hard fescues, Biljart, Scaldis and Waldina, were of the fineleaf fescues tested, the most susceptible to Helminthosporium leaf spot. Over all evaluation dates the cultivar Biljart had the lowest quality.

The evaluation in DuPage County suffered from snow mold damage in the 1981-1982 winter and did not fully recover during the 1982 or 1983 growing seasons. Except where noted, quality ratings for all turfgrass species were poor to fair with little differance exhibited among cultivars within a species (Table 2). Kentucky bluegrass performance was highest in July. Those cultivars exhibiting excellent turfgrass quality were Aspen, Bonnieblue, Haga, Parade, Sydsport and WTN-A34. Two cultivars that were susceptible to Helminthosporium leaf spot were Ram I and Vantage. The performance of the fineleaf fescues deteriorated throughout the season and by October the quality was very poor.

At both locations the turfgrass Puccinellia distans (L.) Parl. cv. Fults or weeping alkaligrass exhibited very poor quality. Although it has poor quality, this grass is salt tolerant and can be used to stabilize areas with a high concentration of salts in the soil. This can be useful along roadways that are salted during the winter. Table 1. Regional cultivar evaluation - Rock Island County.¹

	Leaf Spot ²	Dormancy ³	Quality			Ø	uality ⁵			
Cultivar	4/14	8/16	All Dates ⁴	4/14	5/11	6/9	7/12	9/14	10/10	1
Kentucky Bluegr	ass									1
VTN-I13	8.0a	3.3a	7.7a	6.3a-c	7.0ab	8.3a	9.0a	7.0ab	8.3a	
America	6.3b-d	3.3a	7.6ab	7.0a	7.3a	7.7ab	8.3a-c	7.0ab	8.3a	
30nnieblue	6.7bc	2.7a	7.4a-c	6.3a-c	7.3a	7.7ab	9.0a	6.7ab	7.7a	
LH-NLA	7.0ab	3.0a	7.4a-c	7.0a	7.0ab	7.3ab	9.0a	6.3a-c	7.7a	
Sydsport	4.3fg	2.0a	7.0a-d	6.7ab	6.7a-c	7.7ab	8.7ab	6.0b-d	6.3a	
VTN-A20	7.0ab	1.7a	6.9a-e	5.7b-d	5.7c-e	6.7b-d	8.7ab	7.0ab	7.7a	
Adelphi	5.3d-f	2.7a	6.8a-e	6.3a-c	5.7c-e	5.3d-f	8.3a-c	7.0ab	8.3a	
VTN-A34	5.7c-e	1.0a	6.8a-e	6.3a-c	6.7a-c	6.7b-d	8.7ab	5.3cd	7.3a	
arade	5.7c-e	2.7a	6.8b-f	6.0a-c	6.3a-d	6.3b-e	8.3a-c	6.7ab	7.0a	
Aspen .	6.3b-d	2.3a	6.7c-f	6.0a-c	6.3a-d	6.3b-e	7.3cd	6.3a-c	7.7a	
aron	5.7c-e	3.0a	6.7c-f	6.0a-c	6.0b-d	5.7c-e	8.3a-c	6.7ab	7.3a	
Columbia	5.3d-f	1.7a	6.7c-f	6.7ab	6.7a-c	7.0a-c	7.7b-d	5.3cd	7.0a	
laga	6.3cd	1.3a	6.7c-f	6.3a-c	6.7a-c	7.0a-c	7.7b-d	6.0b-d	6.7a	
tugby	6.3b-d	1.0a	6.7c-f	6.0a-c	6.7a-c	6.7b-d	7.7b-d	6.0b-d	7.3a	
louchdown	6.3b-d	2.0a	6.7c-f	6.0a-c	6.7a-c	6.7b-d	8.7ab	5.0d	7.0a	
Ram 1	4.7e-g	3.3a	6.4d-g	5.3cd	4.7ef	6.7b-d	8.0a-d	7.0ab	7.0a	
/icta	6.0b-d	3.3a	6.4d-g	5.7b-d	5.7c-e	5.3d-f	8.0a-d	6.3a-c	7.7a	
shasta	6.0b-d	2.0a	6.0e-g	6.3a-c	5.3d-f	5.0ef	7.7b-d	5.3cd	6.7a	
lystic	5.3d-f	2.3a	5.9fg	5.3cd	4.3f	5.3d-f	7.00	6.0b-d	7.7a	
/antage	4.09	2.3a	5.89	4.7d	4.3f	4.0f	7.0d	7.3a	7.3a	

(continued)

-19-

Regional cultivar evaluation - Rock Island County (continued). Table 1.

	Leaf Spot ²	Dormancy ³	Quality			5	Quality ⁵		
Cultivar	4/14	8/16	Dates ⁴	4/14	5/11	6/9	7/12	9/14	10/10
Perennial Ryegrass									
Blazer	6.0a	5.3ab	7.4a	5.7a	6.7a	7.7a	8.0a	7.7ab	8.7a
Dasher	5.7a	4.3b-d	7.3ab	5.7a	7.0a	7.0ab	7.7a	7.7ab	8.7a
Loretta	4.7a	5.3ab	7.3ab	5.7a	7.0a	7.3a	7.7a	8.0a	8.0a
Diplomat	5.0a	5.0a-c	7.1ab	5.7a	6.7a	7.0ab	7.7a	7.7ab	8.0a
Manhattan	5.3a	5.7a	7.1ab	5.7a	7.0a	7.3a	7.0a	7.7ab	8.0a
Lesco's CBS Blend	5.7a	4.0cd	7.0ab	5.7a	7.0a	6.3bc	7.0a	7.7ab	8.3a
Pennant	5.3a	4.3b-d	7.0ab	5.7a	7.0a	6.3bc	7.3a	7.7ab	8.0a
Pennfine	5.3a	4.0cd	7.0ab	5.3a	7.0a	6.3bc	7.3a	8.0a	8.0a
Fiesta	5.7a	3.3de	6.9bc	5.3a	6.7a	6.3bc	7.0a	7.3b	8.7a
Premier .	5.3a	4.0cd	6.9bc	5.7a	7.3a	6.0c	7.3a	7.3b	8.0a
Yorktown II	5.7a	4.0cd	6.9bc	5.0a	6.3a	7.3a	7.7a	7.7ab	7.3a
Goalie	4.3a	2.3e	6.60	5.0a	6.7a	5.7c	7.3a	6.7c	8.0a
Tall Fescue									
Mustang	7.7a	9.0a	7.7a	5.7a	7.0a	8.7a	9.0a	8.0a	8.0a
Falcon	6.7a	8.7a	7.4a	5.7a	6.7a	8.0a	9.0a	7.7a	7.3a
Rebel	7.3a	8.3a	7.4a	6.0a	6.7a	8.0a	9.0a	7.3a	7.7a
Olympic	8.3a	9.0a	7.3a	6.0a	7.0a	8.0a	9.0a	7.0a	7.0a
Shannon	7.3a	9.0a	6.9b	5.3a	6.3ab	7.0b	8.3b	7.0a	7.3a
K-31	7.3a	8.7a	6.7b	5.7a	5.7b	7.0b	7.7c	7.0a	7.0a

(continued)

- 20 -

_	
	•
	(continued)
	County
	Island
	Rock
	I.
	evaluation
	cultivar
	Regional
	e 1.
	Tabl

	Leaf Spot ²	Dormancy ³	Quality			5	Quality ⁵			
Cultivar	4/14	8/16	Dates ⁴	4/14	5/11	6/9	7/12	9/14	10/10	
Fine Fescue										
Waldina	4.3b	3.3a	5.8a	6.0a	5.7a	5.0a	5.7a	6.7a	6.0a	
Agram	6.0a	1.3a	5.4a	6.3a	6.0a	5.7a	6.0a	3.3c	5.0a	
Jamestown	6.7a	1.7a	5.4a	5.3ab	6.0a	5.0a	5.3a	5.3b	5.3a	
Pennlawn	6.0a	2.0a	5.2a	6.3a	4.7ab	3.7bc	5.0a	5.0b	6.3a	
Scaldis	4.7b	2.7a	5.0a	5.7a	4.7ab	4.7ab	5.0a	4.7b	5.7a	
Biljart	4.7b	2.3a	4.2b	4.3b	3.0b	3.30	4.7a	4.7b	5.0a	
Local Mixes										
		10.0			r		1	r	, ,	
rast & rine NK Teckets Seed	6.0a	2.7a	6.7ah	6.7a	5.7a	6.0a	1.7a	7.3a	1.72	
Golf Lawn Seed Mix	5.7a	2.7b	6.4bc	5.7a	6.0a	5.3ab	7.0ab	7.0a	7.7a	
Prevail Low Maint.	5.3a	2.3b	6.2cd	5.7a	6.3a	4.7bc	6.3b	7.0a	7.3a	
Evergreen Lawn Mix	4.3a	2.3b	6.03	5.0a	4.7a	4.3c	7.3a	7.0a	7.7a	

same letter are not significantly different at the 0.05 level as determined by Fisher's Least Significant Difference test.

a 1-9 scale where 9 = no visible evidence of disease and 1 = complete²Disease evaluations are made on necrosis. ³Dormancy evaluations are made on a 1-9 scale where $9 = n_0$ dormancy of the turf and 1 = complete dormancy.

⁴Values represent the mean of 18 scores obtained from 3 replications and 6 evaluation dates.

 5 Quality evaluations are made on a 1-9 scale where 9 = excellent turfgrass quality and 1 = very poor turfgrass quality.

	Leaf Spot ²	Quality				Quality ⁴			
Cultivar	4/14	All Dates ³	4/14	5/11	6/9	7/12	8/17	9/14	10/10
Kentucky Bluegrass									
WTN-A34	5.0a-c	6.5a	5.7a	5.0a	6.7a	8.7a	6.3a	6.7b-d	6.3a
Merit	5.3ab	6.0a	5.7a	4.0b-d	5.3a-c	7.3b-d	6.7a	7.7a	5.7a
Parade	4.7a-d	6.0a	5.3a	4.3a-c	5.3a-c	7.7a-c	6.0a	7.0a-c	6.0a
Sydsport	5.0a-c	6.0a	5.3a	4.0b-d	5.7ab	7.7a-c	6.0a	7.0a-c	6.0a
Bonnieblue	5.7a	5.9a	5.0a	4.7ab	5.3a-c	7.7a-c	5 • 3a	7.3ab	6.0a
Aspen	5.7a	5.7a	5.7a	4.0b-d	5.3a-c	8.0ab	5.0a	6.3c-e	5.7a
Baron	4.7a-d	5.7a	5.0a	3.7c-e	4.3b-d	7.3b-d	6.7a	6.3c-e	6.3a
Columbia	5.0a-c	5.7a	5.3a	4.3a-c	5.0a-c	7.3b-d	5.7a	6.3c-e	5.7a
Haga	5.0a-c	5.7a	5.0a	4.0b-d	5.7ab	7.7a-c	5.3a	6.3c-e	6.0a
Adelphi	4.7a-d	5.6a	5.0a	4.3a-c	3.7cd	7.3b-d	5.7a	6.7b-d	6.3a
LH-NTW	5.0a-c	5.6a	5.0a	4.7ab	5.3a-c	7.0b-e	4.7a	6.3c-e	6.0a
America	5.0a-c	5.4a	4.7a	4.0b-d	5.3a-c	6.7c-f	5.3a	6.3c-e	5.3a
Rugby	5.7a	5.4a	4.7a	4.0b-d	4.3b-d	7.3b-d	5.0a	6.7b-d	5.7a
Touchdown	4.7a-d	5.4a	5.0a	4.3a-c	5.0a-c	6.3d-f	5.7a	6.0de	5.7a
WTN-I13	5.0a-c	5.4a	5.0a	4.3a-c	5.0a-c	6.3d-f	5.0a	5.7e	6.3a
Victa	4.7a-d	5.3a	5.0a	3.0e	3.7cd	7.0b-e	6.7a	6.0de	5.7a
Shasta	4.3b-d	5.1a	5.3a	4.3a-c	3.7cd	6.0ef	5.3a	5.7e	5.3a
WTN-A20	4.3b-d	5.1a	5.0a	4.0b-d	4.0b-d	6.3d-f	4.7a	6.0de	5.7a
Mystic	4.0c-e	5.0a	4.3a	3.7c-e	3.7cd	6.0ef	5.7a	6.3c-e	5.7a
Ram 1	3.0e	4.8a	4.0a	3.3de	3.0d	6.3d-f	5.0a	5.7e	6.0a
Vantage	3.7de	4.8a	4.7a	3.7c-e	3.0d	5.7£	5.0a	6.7b-d	5.3a

(continued)

1.

-
17
ž
്ല
2
c
11
1
8
0
0
-
>
1
2
1
ີ
0
()
~
- 43
e
0
.
õ
-
5
6
hered
12
- 1
C
6
<u>۲</u>
Ę.
ati
lati
Luati
luati
aluati
valuati
evaluati
evaluati
c evaluati
ur evaluati
ar evaluati
var evaluati
ivar evaluati
civar evaluati
tivar evaluati
ltivar evaluati
ultivar evaluati
cultivar evaluati
cultivar evaluati
. cultivar evaluati
1 cultivar evaluati
al cultivar evaluati
nal cultivar evaluati
onal cultivar evaluati
onal cultivar evaluati
rional cultivar evaluati
gional cultivar evaluati
eqional cultivar evaluati
Regional cultivar evaluati
Regional cultivar evaluati
Regional cultivar evaluati
Regional cultivar evaluati
· Regional cultivar evaluati
2. Regional cultivar evaluati
2. Regional cultivar evaluati
2. Regional cultivar evaluati
e 2. Regional cultivar evaluati
le 2. Regional cultivar evaluati

	Leaf Spot ²	Quality				Quality ⁴			
Cultivar	4/14	Dates ³	4/14	5/11	6/9	7/12	8/17	9/14	10/10
Perennial Ryegrass									
Pennant	4.0a	5.5a	4.3a	4.7a	5.7a	5.7a	6.3a	6.0a	5.7a
Blazer	4.0a	5.2a	4.7a	4.0ab	5.7a	5.3a	5.0bc	6.3a	5.3ab
Fiesta	4.7a	5.1a	4.7a	4.7a	5.0a	5.7a	5.0bc	5.7a	4.0a-c
Manhattan	4.3a	5.1a	4.3a	4.3a	5.7a	6.0a	5.3ab	5.7a	4.7b-d
Loretta	4.0a	5.0a	4.3a	4.3a	6.7a	6.0a	4.0c	5.3a	4.7b-d
Pennfine	4.7a	4.9a	4.7a	4.0ab	5.0a	6.0a	4.3bc	5.7a	4.7b-d
Lesco's CBS Blend	4.3a	4.8a	4.3a	4.3a	5.0a	5.7a	4.0c	5.3a	5.0a-c
Premier	4.3a	4.8a	4.7a	4.3a	4.3a	4.3a	5.3ab	5.7a	5.3ab
Dasher	4.7a	4.6a	4.0a	3.0b	4.7a	4.3a	5.3ab	5.3a	5.3ab
Yorktown II	4.0a	4.5a	4.0a	3.7ab	5.0a	5.0a	4.3bc	5.0a	4.7b-d
Goalie	4.3a	4.4a	4.0a	3.0b	5.0a	4.7a	4.7bc	5.3a	4.3cd
Diplomat	4.3a	4.2a	з.7а	3.0b	3.3a	5.0a	4.7bc	6.0a	4.0q
Tall Fescue									
Rebel	6.7a	6.6a	6.3a	5.7a	6.7a	7.7a	6.3a	7.3a	6.3a
Olympic	6.3a	6.3a	5.7a	5.3a	6.3a	7.3a	6.3a	6.7a	6.3a
Falcon	6.0a	6.0a	5.7a	4.7a	5.7a	7.3a	6.3a	6.3a	5.7b
Shannon	6.0a	6.0a	5.7a	5.0a	6.0a	7.3a	6.3a	6.3a	5.3b
K-31	6.0a	5.9a	5.3a	5.0a	6.0a	7.3a	6.0a	6.3a	5.3b
				(continue	(E				

	Leaf Spot ²	Quality			5	juality ⁴			
Cultivar	4/14	All Dates ³	4/14	5/11	6/9	7/12	8/17	9/14	10/10
Fine Fescue									
Pennlawn	4.3a	3.7a	4.7a	4.0a	2.7c	3.3a	2.3ab	3.0a	3.0a
Biljart	5.7a	3.5a	5.0a	4.7a	3.0bc	3.3a	3.0a	3.0a	2.7a
Scaldis	5.3a	3.4a	5.3a	5.0a	4.0ab	3.0a	2.3ab	2.0a	2.0b
Waldina	4.7a	3.4a	6.0a	5.3a	4.0ab	3.0a	1.7bc	1.7a	2.0b
Jamestown	6.0a	3.3a	5.7a	5.0a	4.7a	4.0a	1.7bc	2.3a	2.7a
Agram	5.7a	3.2a	5.0a	4.7a	4.3a	3.7a	1.3c	1.7a	2.0b
Mixes									
Baron-Pennfine	5.0a	6.0a	5.0a	4.0a	6.0ab	7.3a	6.3a	7.0a	6.0a
Adelphi-Pennfine	5.3a	5.8a	4.3a	4.7a	5.3b	7.7a	6.0a	6.7a	5.7a
Victa-Yorktown	4.3a	5.8a	4.7a	4.3a	6.7a	6.3a	6.0a	6.0a	6.0a
Columbia-Manhatta	1 5.0a	5.6a	5.0a	4.0a	5.3b	6.7a	5.7a	7.3a	5.3a

²Disease evaluations are made on a 1-9 scale where 9 = no visible evidence of disease and 1 = completenecrosis.

 3 Values represent the mean of 21 scores obtained from 3 replications and 7 evaluation dates.

⁴Quality evaluations are made on a 1-9 scale where 9 = excellent turfgrass quality and 1 = very poor turfgrass quality.

BENTGRASS BLENDS FOR PUTTING GREEN TURF

D. J. Wehner and J. E. Haley

INTRODUCTION

There are advantages and disadvantages associated with using vegetatively propagated bentgrass selections for putting green turf. The main advantage is that the putting green will be very uniform since every plant is genetically identical to every other plant. The main disadvantage is that any factor which affects the given cultivar can affect the entire green. Disease outbreaks have the potential of being more severe on vegetatively propagated areas because the susceptability of all plants is basically the same. Seeded bentgrass cultivars offer an advantage over vegetative strains in that they are genetically more diverse. A seeded variety may be composed of several different individuals which possess agronomically similar characteristics.

Blending two or more bentgrass varieties to gain genetic diversity is a sound principle in theory. Problems may arise however because the two varieties may not have similar enough growth rates or morphological characteristics. Past attempts to blend vegetatively propagated bentgrass varieties have not always been successful. Swirling or excessive grain has sometimes occurred on these areas. After seeing severely damaged Toronto greens it was felt that an evaluation of blends of seeded bentgrass cultivars would be worthwhile. This would be an attempt to produce a quality putting surface and at the same time increase the genetic diversity of the stand.

MATERIALS AND METHODS

All possible two-way blends of the cultivars Penncross, Penneagle, Seaside, and Emerald were established at the Ornamental Horticulture Research Center in Urbana August 21, 1981. Each blend and the four individual components were established in 6 x 10 ft plots with three replications. The turf is maintained at a 0.25 inch height of cut and irrigated as necessary to prevent wilt. During the growing season the turf is fertilized with 5 lb N/1000 sq ft and is on a preventative fungicide program. The area is topdressed to level the surface.

RESULTS

There was no difference in rate of establishment among the components and blends. In 1982 turfgrass quality was highest in plots containing Penneagle, alone or in a blend. In 1983, the same trends were apparent (Table 1). Seaside and Emerald had a higher incidence of dollar spot prior to fungicide application and had poorer color throughout the season. At this time no cultivar segregation is apparant in the blends; however, plots will be evaluated over several years to see if any segregation occurs.

				Quality	5			Quality	Spring 4	Dollar
	4/20	5/17	6/14	7/11	8/19	9/22	10/28	Dates ³	Greenup 3/15	spot - 6/27
enneagle	5.7ab	7.0a	7.7a	7.7a	8.7a	8.0a	8.7a	7.6a	6.0a	8.0a
enncross-Penneagle	6.0a	6.7ab	7.3ab	8.0a	8.0ab	7.0bc	8.3ab	7.3ab	5.7ab	8.0a
enneagle-Emerald	6.0a	5.3a-c	6.0ab	7.7a	8.0ab	7.0bc	8.3ab	7.0bc	5.3ab	7.3ab
enneagle-Seaside	6.0a	7.0a	7.7a	7.7a	8.0ab	7.3ab	8.3ab	7.4ab	5.3ab	8.0a
enncross	5.3a-c	5.3a-c	7.3ab	7.3ab	7.3bc	7.3ab	7.7a-c	6.8cd	4.3cd	8.0a
enncross-Emerald	5.0a-c	5.3a-c	6.7b	6.7b	6.7cd	7.0bc	7.0c	6.3de	4.0d	6.7b
enncross-Seaside	5.0a-c	5.3a-c	6.7b	6.7b	6.3c-e	6.0de	7.3bc	6.2e	4.3cd	7.3ab
merald	4.3cd	4.3c	5.0c	5.00	6.0de	6.3cd	7.3bc	5.5f	5.0bc	5.00
easide-Emerald	4.7b-d	5.0bc	5.30	5.70	5.7de	6.0de	6.7c	5.6f	5.3ab	5.7c
easide	3.7d	4.7c	5.30	5.30	5.3e	5.3e	7.0c	5.2f	4.3cd	5.7c

Means in the same column with the same letter are not significantly different at the 0.05 level as determined by Fisher's Least Significant Difference test. All values represent the mean of 3 replications.

²Quality evaluations are made on a 1-9 scale, where 9 = excellent turfgrass quality and 1 = very poor turfgrass quality.

³Values represent the mean of 21 scores obtained from 3 replications and 7 evaluation dates.

= straw colored. ⁴Spring greenup evaluations are made on a 1-9 scale, where 9 = very dark green and 1

= no disease visible and 1 = complete necrosis. ⁵Dollar spot evaluations are made on a 1-9 scale, where 9

FAIRWAY BENTGRASS MANAGEMENT STUDY

D. J. Wehner and J. E. Haley

INTRODUCTION

Creeping bentgrass has not been widely utilized for golf course fairways because of its aggressive nature and requirement for high levels of maintenance. However, annual bluegrass, which is a predominant component of many golf course fairways and is susceptible to heat and drought injury, can also require high levels of maintenance to produce quality turf. The purpose of this research is to evaluate the creeping bentgrass cultivars Prominent, Penncross, Penneagle, Seaside, Emerald, and Highland colonial bentgrass under varying levels of fairway management.

MATERIAL AND METHODS

The large blocks of each cultivar which were established in 1981 have been split so that half the area is receiving a preventative fungicide program while the other half receives no fungicide. Perpendicular to the fungicide strips are cultivation treatments consisting of vertical mowing, core aerification, or no cultivation. These treatments were applied in June of 1983. The plots are monitored for turfgrass quality, thatch buildup, and disease severity. Plots are mowed at 5/8" and given 3 lbs nitrogen/1000 sq ft/yr as 18-5-9.

RESULTS

During 1982, the first year of the study, major quality differences started to appear in June with the incidence of dollar spot. Fungicide treated plots had higher quality ratings than the nonsprayed plots until October when dollar spot activity subsided. Lower overall quality ratings for Penncross and Penneagle resulted from their poorer mowing quality during very warm weather. Emerald lacked the vigor to prevent crabgrass from becoming a problem and thus, received lower quality ratings.

In 1983, dollar spot was not a serious problem on the plots because of the warm dry summer. The plots that were vertical mowed received lower quality ratings (Table 1) because they were damaged and the hot weather restricted recovery. The cultivars Penneagle, Penncross, Seaside, and Prominent received the highest quality ratings throughout the year while Highland, because of its poor heat tolerance, and Emerald, because of its poor vigor, received lower quality ratings. No one cultivar consistantly outranked the others in terms of quality. There was a higher percentage of crabgrass in plots that were core cultivated. A preemergence material was not applied in 1983.

	Spring Greenup ²		Qual	ity ³	Perce	Percent	
Treatment	3/15	4/20	5/17	6/15	7/14	9/22	9/22
Fungicide	4.7a	5.4a	6.5a				
No Fungicide	4.2b	4.4b	5.3b				
Prominent	5.0a	5.4a	5.8b	6.8ab	6.0b	5.3b	15.9b
Seaside	4.2b	5.0ab	5.8b	6.4b	6.2ab	5.8ab	5.4cd
Penncross	3.8b	5.4a	6.6a	7.4a	6.8a	5.2b	6.6b-d
Penneagle	4.2b	4.4b	6.8a	6.5b	6.8a	6.5a	2.6d
Highland	5.5a	4.5b	5.4bc	6.4b	4.8c	5.2b	14.2bc
Emerald	4.3b	4.7ab	5.1c	5.8c	5.9b	4.1c	30.7a
Core cultivation	4.9a	5.1a			6.1a		18.9a
Vertical mowing	4.4b	4.7b			5.7b		10.0b
No cultivation	, 4.3b	5.0a			6.4a		8.8b

Table 1. Evaluation of creeping bentgrasses maintained as fairway turf.

All values represent the mean of 4 replications. Means in the same column with the same letter are not significantly different at the 0.05 level as determined by Fisher's Least Significant Difference test.

²Spring greenup evaluations are made on a 1-9 scale, where 9 = very dark turf color and 1 = dormant turfgrass.

³Quality evaluations are made on a 1-9 scale where 9 = excellent turfgrass quality and 1 = very poor turfgrass quality.

⁴Percent crabgrass evaluations are made on a scale of 0-100, where 100 = 100 percent cover of the plot with crabgrass.

ANNUAL BLUEGRASS CONTROL IN CREEPING BENTGRASS

D. J. Wehner and J. E. Haley

Annual bluegrass (<u>Poa annua</u>) is often a major component of golf course turf. It competes well with creeping bentgrass and Kentucky bluegrass when irrigation is frequent, nitrogen levels are high, and mowing heights are low. Even when mowing heights are .25 inches or less, annual bluegrass is able to produce large amounts of seed. Annual bluegrass is often considered undesirable golf turf. It is suceptible to winter damage and is difficult to maintain as a quality turf during the stressful summer months. The purpose of this study was to evaluate several pesticides as controls of annual bluegrass in a mature creeping bentgrass putting green.

METHODS AND MATERIALS

The study was established May 24, 1982 in Urbana, IL. The north end of the experimental plot is a Penncross creeping bentgrass turf and the south end is a Toronto creeping bentgrass turf with 15% to 50% annual bluegrass infestation. The materials tested were a preemergence control herbicide, Prograss, at 1 and 2 lb ai/A, and a post emergence herbicide, Rubigan, at 1 oz and 2 oz commercial formulation (cf)/1000 sq ft. A growth regulator, EL-500, was evaluated at 1.25 lb ai/A alone and in combination with Rubigan at 1 oz cf/1000 sq ft and Rubigan at 2 oz cf/1000 sq ft. In 1983, the preemergence herbicide, Antor was added to the study at the rates of 2 to 4 lb ai/A. Dates of application are listed in Table 1. Plots are monitored for phytotoxicity and will be evaluated in the spring for percent of annual bluegrass per plot.

RESULTS

There was reduction of annual bluegrass cover during the first year of this study (1982) in all plots regardless of the treatment (Table 2). The percent control ratings are based on a visual evaluation of the plots in the Spring of 1983. As indicated in the table, there were no significant treatment differences. The initial ratings of annual bluegrass control for the herbicide antor will be made in the Spring of 1984. There was unacceptable phytotoxicity on plots that were treated with Prograss and the EL-500 growth retardant compound (Table 3). No application of a preemergent annual bluegrass herbicide was made in conjunction with the Rubigan treatments. It is possible that Rubigan is reducing the percent annual bluegrass in the plots during the growing season but the weakened plants are being replaced with new seedlings in the fall. Our ratings would not reflect any reduction in annual bluegrass on these plots during the growing season because we are evaluating them in the Spring. The predominant period for annual bluegrass germination is in the fall of the year.

	Rate/Application Date			(lb ai/A unless noted)		
Pesticide Treatment	3/31	5/10	6/15	7/19	8/31	10/5
Prograss	1.0	-		-	1.0	
Prograss	2.0	-	-	-	2.0	-
Rubigan	-	-	1.0 oz	0.5 oz	0.5 oz	-
Rubigan	-	-	2.0 oz	1.0 oz	1.0 oz	-
EL-500	-	-	1.25	-	-	-
EL-500 +	-	-	1.25	-	-	-
Rubigan	-	-	1.0 oz	-	-	-
EL-500 +	-	-	1.25	-	-	-
Rubigan	-	-	2.0 oz	-	-	-
Antor	1.0	1.0	-	-	1.0	1.0
Antor	2.0	1.0	-	-	2.0	1.0
Antor	2.0	2.0	-	-	2.0	2.0
Control	-	-	-	-	-	-

Table 1. Pesticide evaluation for the control of annual bluegrass in a creeping bentgrass turf - 1983 rates and application dates.

All Rubigan formulations are oz of commercial formulation per 1000 sq ft.
	Rate	Per Cent Control ²	
Material	lb ai/A/yr	May 1983	
Prograss	2.0	68.3a	
Prograss	4.0	73.9a	
Rubigan	2.0 oz cf/M/yr	60.5a	
Rubigan	4.0 oz cf/M/yr	38.3a	
EL-500	1.25	72.2a	
EL-500 +	1.25 +	38.9a	
Rubigan	1.0 oz cf/M/yr		
EL-500 +	1.25 +	40.3a	
Rubigan	2.0 oz cf/M/yr		
Control	-	79.4a	

Table 2. Per cent control of the May 1982 annual bluegrass populations in creeping bentgrass plots as evaluated in May 1983.

¹All values represent the mean of 3 replications. Means in the same column with the same letter are not significantly different at the 0.05 level as determined by Fisher's Least Significant Difference test.

²Per cent control of May 1982 annual bluegrass populations are based on visual evaluations of Poa annua populations made in May of 1982 and May 1983, where per cent control = (1982 population - 1983 population)/1982 population. This score was multiplied by 100 to obtain per cent.

	Rate	Phytotoxicity	to Penncross	creeping $bent^2$
Material	lb ai/A/yr	6/27	7/11	9/16
Prograss	2.0	8.7ab	9.0a	7.0d
Prograss	4.0	8.3bc	9.0a	5.0e
Rubigan	2.0 oz cf/M/yr	8.0c	8.7a	9.0a
Rubigan	4.0 oz cf/M/yr	9.0a	8.3a	9.0a
EL-500	1.25	5.0d	6.7b	9.0a
EL-500 +	1.25 +	5.0d	6.3b	9.0a
Rubigan	1.0 oz cf/M/yr			
EL-500 +	1.25 +	5.0d	6.0b	9.0a
Rubigan	2.0 oz cf/M/yr			
Antor	4.0	9.0a	9.0a	9.0a
Antor	6.0	9.0a	9.0a	8.0b
Antor	8.0	9.0a	9.0a	7.7c
Control	-	9.0a	9.0a	9.0a

Table 3. Phytotoxicity evaluation in 1983 of several pesticides used to control annual bluegrass in a creeping bentgrass turf.

	Rate	Phytotoxicity to	Toronto	creeping bent ²
Material	lb ai/A/yr	6/27	7/11	9/16
Prograss	2.0	9.0a	9.0a	7.0c
Prograss	4.0	8.7b	9.0a	5.0d
Rubigan	2.0 oz cf/M/yr	9.0a	9.0a	9.0a
Rubigan	4.0 oz cf/M/yr	9.0a	8.0ab	9.0a
EL-500	1.25	5.0c	7.0bc	9.0a
EL-500 +	1.25 +	5.0c	7.0bc	9.0a
Rubigan	1.0 oz cf/M/yr			
EL-500 +	1.25 +	5.0c	6.0c	9.0a
Rubigan	2.0 oz cf/M/yr			
Antor	4.0	9.0a	9.0a	9.0a
Antor	6.0	9.0a	7.0bc	8.3b
Antor	8.0	9.0a	9.0a	7.3c
Control	-	9.0a	9.0a	9.0a

All values represent the mean of 3 replications. Means in the same column with the same letter are not significantly different at the 0.05 level as determined by Fisher's Least Significant Difference test.

²Phytoxicity ratings are made on a scale of 1-9, where 9 = no visible injury to the turfgrass and 1 = complete necrosis.

EVALUATION OF HERBICIDES FOR PREEMERGENCE AND POSTEMERGENCE CONTROL OF CRABGRASS

J. E. Haley and D. J. Wehner

INTRODUCTION

The evaluation of preemergence and postemergence herbicides for crabgrass (Digitaria sp.) control on established turf is a continuing process. Periodic evaluations are necessary to determine the suitability of new materials and formulations for use on turf. The evaluation of herbicides used for crabgrass control in other crops but not labeled for turf is also necessary to determine their potential for use on turfgrass.

METHODS AND MATERIALS

The herbicides evaluated in this trial were Dacthal 75WP, Dacthal 6F, Betamec 4EC, Balan 2.5G, Ronstar 2G, UC 77892 80WP and a herbicide - insecticide combination Balan + Oftanol. With some of the materials a second application at a one half rate was made 6 weeks following the first application. The postemergence herbicides evaluated were Daconate 6 and two formulations of Trimec and MSMA, EH 707 and EH 697. Preemergence treatments were applied April 18, 1983 and the application date for postemergence treatments was August 9, 1983. Plot size was 3 x 12 feet and materials were applied at 28 gallons per acre to a Kentucky bluegrass - tall fescue stand. The area was fertilized with 1 lb N/1000 sq ft on June 7. The area was not irrigated.

RESULTS

Best preemergence control of crabgrass was obtained with both formulations of Dacthal, Betamec and 2 applications of Ronstar (Table 1). The herbicide UC 77892 80WP showed little preemergence activity and exhibited some phytotoxicity to the turf (page 37, Table 2). Daconate 6 provided the best post emergence control of the crabgrass with minimal damage to the turf.

	a set of the	
	Rate	Percent 2
Material	lb ai/A	crabgrass ²
UC 77892 80WP	4.0	18.3b-d
UC 77892 80WP	4.5	43.3b
UC 77892 80WP	5.0	20.0b-d
UC 77892 80WP	5.5	25.0b-d
UC 77892 80WP	6.0	22.3b-d
UC 77892 80WP	7.0	31.7bc
Dacthal 75WP (DCPA)	10.5	0.7d
Dacthal 75WP	10.5 + 7.5*	b0.0
Dacthal 6F	10.5	2.3d
Dacthal 6F	10.5 + 7.5*	D.0d
Betamec 4EC (bensulide)	7.5	1.3d
Balan 2.5G (benefin)	2.0	13.3cd
Balan 2.5G	2.0 + 1.0*	15.0cd
Ronstar 2G (oxadiazon)	2.0	13.3cd
Ronstar 2G	2.0 + 1.0*	4.0d
Balan + Oftanol	5 1b cf/1000 sq ft	16.7cd
EH 707 (Trimec + MSMA)	4 oz/1000 sq ft	35.0bc
EH 697 (Trimec + MSMA)	4 oz/1000 sq ft	19.3b-d
Daconate 6 (MSMA)	2.0	10.0cd
Control	-	93.3a

Table 1. Evaluation of herbicides for preemergence and postemergence control of crabgrass in a Kentucky bluegrass - tall fescue turf.

¹All values represent the mean of 3 replications. Means in the same column with the same letter are not significantly different at the 0.05 level as determined by Fisher's Least Significant Difference test.

²Percent crabgrass control indicates the percent of plot area covered by crabgrass plants.

*Second applications were made 6 weeks following the first.

EVALUATION OF HERBICIDES FOR BROADLEAF WEED CONTROL IN TURF

J. E. Haley and D. J. Wehner

INTRODUCTION

The high cost of pesticide development has prohibited the introduction of new herbicides which are used exclusively for broadleaf weed control in turfgrass stands. Manufacturers are evaluating new formulations of standard turfgrass herbicides or seeking data to expand the label of products which have proven efficacious on large scale crops. The purpose of this research was to evaluate the herbicides Benazolin 4F, dicamba 4S, 2,4-D, MCPP, bromoxynil and UC 77892 for control of broadleaf plantain (Plantago major L.), buckhorn plantain (Plantgo lanceolate L.) and white clover (Trifolium repens L.) in a mixed Kentucky bluegrass - tall fescue turfgrass stand.

METHODS AND MATERIALS

Treatments consisted of sprays containing individual herbicides or combinations of herbicides. The material was applied June 6, 1983 in 28 gallons of water per acre. Plot size was 3 x 12 feet and each treatment was replicated 3 times. Weed evaluations were made on a scale of 1-9, where 9 = no control of the weed species and 1 = no weeds present. Ratings were made July 13, 1983.

RESULTS

The best control of both plantain species was obtained with the herbicides 2,4-D and MCPP alone or in combination with other herbicides (Table 1). White clover was best controlled with dicamba at a rate of .25 lb ai/A alone, or in combination with benazolin; 2,4-D and MCPP; and MCPP D4 alone at a rate of 2 lb ai/A, or combined with 2,4-D. Good control of both weed species was obtained with the combination of 2,4-D, MCPP and dicamba. The experimental compound UC 77892 80WP provided no control of either weed species present and proved to have some phytotoxic effect on a Kentucky bluegrass turf in another test established October 6, 1983. (Table 2).

Material	Rate lb ai/A	White Clover ²	Plantain ²
Benazolin 4F + Dicamba 4S	0.25 + 0.125	2.0d-f	4.0d
Benazolin 4F + Dicamba 4S	0.25 + 0.06	4.0bc	6.3c
Benazolin 4F + Dicamba 4S	0.50 + 0.06	4.0bc	6.0c
Benazolin 4F + Dicamba 4S	0.50 + 0.125	1.3ef	6.7c
Benazolin 4F + Dicamba 4S	0.50 + 0.25	1.3ef	5.7c
Dicamba	0.125	3.3b-d	6.3c
Dicamba	0.25	1.0f	6.0c
Dicamba	0.06	3.7bc	7.0bc
Trimec	4.0 pt cf/A	1.0f	1.0e
2,4-D + MCPP + Dicamba	1.0 + 0.5 + 0.25	1.0f	1.0e
2,4-D	1.0	4.3b	1.0e
MCPP D4	1.0	2.0d-f	1.7e
MCPP D4	2.0	1.7ef	2.3e
Buctril + MCPP D4	1.0 + 1.0	2.7c-ed	2.3e
MCPP D4 + 2,4-D	6 pt cf/A	1.0f	1.0e
UC 77892 80WP	5.0	9.0a	9.0a

Table 1. Post-emergence control of broadleaf weeds 4 weeks following herbicide application.¹

¹All values represent the mean of 3 replications. Means in the same column with the same letter are not significantly different at the 0.05 level as determined by Fisher's Least Significant Difference test.

²Weed evaluations are made on a scale of 1-9, where 9 = no control of the weed species and 1 = no weeds present.

	Rate	2
Herbicide	lb ai/A	Phytotoxicity ²
UC 77892 80WP	4.0	6.3c-e
UC 77892 80WP	5.5	5.7de
UC 77892 80WP	7.0	5.0e
EH 697 (Trimec + MSMA)	4.0 oz cf/1000 sq ft	8.3ab
EH 707 (Trimec + MSMA)	4.0 oz cf/1000 sq ft	8.3ab
Trimec	4.0 pt cf/A	7.7a-c
Daconate 6	1.0	8.7a
Daconate 6	2.0	8.0ab
Benazolin + Dicamba	0.25 + .125	8.7a
Benazolin + Dicamba	0.5 + .25	9.0a
Benazolin	0.25	9.0a
Benazolin	0.5	8.0ab
MCPP D4 + 2,4-D	6.0 pt cf/A	7.0b-d

Table 2. Phytotoxicity evaluation of several turfgrass herbicides on a Kentucky bluegrass turf.¹

¹All values represent the mean of 3 replications. Means in the same column with the same letter are not significantly different at the 0.05 level as determined by Fisher's Least Significant Difference test.

²Phytotoxicity evaluations are made on a scale of 1-9, where 9 = no visible injury to the turf and 1 = complete necrosis.

FLUID NITROGEN FERTILIZERS FOR HOME LAWNS

T. W. Fermanian, D. J. Wehner, and J. E. Haley

INTRODUCTION

Nitrogen is generally considered the nutrient exhibiting the greatest influence on turfgrass growth. Actively growing turfgrass responds quickly to available nitrogen with improved color and an increased growth rate. The majority of nitrogen fertilizers for turf are applied as dry materials. However, liquid application can offer such advantages as reduced labor, reduced mixing and loading time, and increased accuracy with liquid metering. There are several nitrogen materials which can be applied as solutions to turf. With the rapid growth of the home lawn care industry in recent years, an evaluation of these types of materials is needed. The purpose of this study is to evaluate the performances of liquid nitrogen sources relative to each other and to granular sources in a home lawn use situation.

MATERIAL AND METHODS

Nitrogen sources applied as liquids include FLUF, Formolene, Folian (12-4-3 and 12-4-6), Nitroform and urea. Granular sources used in this study include urea with inhibitor, and Oxamide. Urea is added to some of the controlled release liquid sources to provide a quickly available source of nitrogen until the controlled release material becomes available to the turf. There are a total of 11 treatments in addition to the check in this study, which are shown along with treatment schedule in Table 1.

This study was initiated on May 1, 1981, on an established stand of 'Columbia-Touchdown' Kentucky bluegrass. Each treatment is replicated three times in a randomized complete block design. Liquid materials were applied with a CO backpack sprayer, with a final spray volume of four gallons per 1000 square feet. Granular materials were spread by hand. A schedule similar to that of a home lawn care company was followed, with three applications in 1983 on May 6, June 16, and August 15. A similar schedule with an additional application in October was followed in 1981 and 1982.

RESULTS

The main turf response measured in this study in 1983 was color. Color was visually estimated, using a scale of 1 to 9, with a 9 rating representing ideal turf color (Table 2).

The oxamide treatment was added to the study for the first time in 1983 and represents a first year response. As with most other materials in the first season, very sharp responses were noticed with additions of any fertilizer.

The urea and ureaform based materials again showed excellent response throughout the growing season and in particular during June and July with Formolene and Formolene with WIN having some of the best overall responses of all fertilizers tested. While showing good color response in May and early June, the materials that contained only urea tended to have the poorest overall response, especially during the July and August period. The addition of urea to ureaform materials such as FLUF and Nitroform showed no real gains in color response as compared to the ureaform source alone.

	Pounds of Ac	tual Nitrogen/1	000 square feet	
Nitrogen Source	May 6	June 16	August 16	
Urea (liquid)	1.0	1.0	1.0	
Urea with inhibitor	1.0	1.0	1.0	
FLUF	1.0	1.0	1.0	
FLUF + urea	.50/.50	.50/.50	.50/.50	
Formolene	1.0	1.0	1.0	
Formolene with WIN	1.0	1.0	1.0	
Nitroform	1.0	1.0	1.0	
Nitroform + urea	0/.50	.50/.50	.50/.50	
Oxamide	1.0	1.0	1.0	
Folian 12-4-4	1.0	1.0	1.0	
Folian 12-4-6	1.0	1.0	1.0	
Check	0	0	0	

Table 1. Schedule of treatments of liquid nitrogen sources for home lawns.

				Col	or ²				
Source	5/10	6/1	6/7	6/14	6/22	6/29	7/13	7/21	Dates ³
Formolene	8.0a	8.0b	6.7bc	7.3ab	8.0a	8.0ab	8.0a	7.3a	7.7a
Oxamide	7.7a	9.0a	8.0a	8.0a	7.3bc	7.0c	7.0b	7.3a	7.7ab
Urea with inhibitor	8.0a	7.7bc	7.0b	7.0bc	8.0a	8.3a	7.0b	7.3a	7.5a-c
Formolene with WIN	8.0a	7.7bc	6.7bc	7.0bc	8.0a	8.3a	7.0b	7.3a	7.5a-d
FLUF	8.0a	7.3b-d	6.3b-d	6.7b-d	7.00	7.7a-c	7.7ab	8.0a	7.3b-d
FLUF + urea	8.0a	7.7bc	6.3b-d	6.7b-d	7.7ab	7.7a-c	7.3ab	7.3a	7.3b-d
Nitroform	8.0a	6.7de	6.3b-d	7.0bc	7.7ab	7.7a-c	7.3ab	8.0a	7.3b-d
Folian 12-4-4	8.0a	7.0c-e	6.0cd	6.7b-d	7.3bc	8.0ab	7.7ab	7.7a	7.2cd
Nitroform + urea	8.0a	6.3e	6.3b-d	6.7b-d	7.0c	7.3bc	8.0a	8.0a	7.2cd
Urea	7.7a	7.7bc	6.3b-d	6.3c-e	7.0c	7.3bc	7.3ab	7.7a	7.2d
Folian 12-4-6	7.0b	6.7de	5.7d	5.7e	7.00	7.0c	7.0b	7.3a	6.7e
Check	8.0a	6.3e	7.0b	6.0de	6.3d	5.3d	6.0c	6.0b	6.4e

All values represent the mean of 3 replications. Means in the same column with the same letter are not significantly different at the 0.05 level as determined by Fisher's Least Significant Difference test.

²Color evaluations are made on a scale of 1-9, where 9 = very dark green and 1 = straw colored.

³Values represent the mean of 24 scores obtained from 3 replications and 8 evaluation dates.

LOW VOLUME FLUID FERTILIZER APPLICATION

T. W. Fermanian and J. E. Haley

INTRODUCTION

When applying fertilizers in liquid form to turf, a spray volume of 4 gallons or more is generally used. If a fertilizer could be safely applied with reduced amounts of water, it would be possible to spray more lawns with one tankfull of material, or to spray the same number of lawns with a smaller tank. The purpose of this study was to evaluate the effects of a one or two pounds of nitrogen/1000 sq ft applications at various carrier rates and to evaluate the potential for phytotoxicity with these applications on a Kentucky bluegrass turf.

MATERIAL AND METHODS

Four liquid-applied nitrogen fertilizers are used in this trial: FLUF, Fan, Formolene, and urea. Fertilizers were applied at carrier rates of 3, 2, 1, 1.18 (FLUF), 0.50 (Formolene), and 0.59 (FLUF) gallons per 1000 sq ft. All treatments provided 1 or 2 pounds of nitrogen per 1000 sq ft. Fertilizers were applied on July 19 at 2:00 pm. The air temperature was 93° F with the relative humidity at 100%. No significant rainfall was recorded in the previous 18 days. Materials were applied using a CO backpack sprayer. Plot size was 3 x 5 ft.

RESULTS

Following application, the plots were evaluated for phytoxicity or injury to the turfgrass. This was a visual rating describing the total leaf blade injury appearing on the plots after fertilizer application. A rating of 0 to 5 percent is considered within the acceptable injury range.

The results from 1983 (Table 1) show a clear separation between totally soluble materials and those with some slow-release characteristics. FLUF and Formolene did not injure the turf, even at the lowest carrier rates. Urea showed significant injury at all rates and spray volumes. Fan caused injury only with the application of more than 1 pound N/1000 sq ft. While significant injury of the leaf blade was observed for some materials, the greatest injury measured was 20%. The turf recovered from this injury within 14 days.

Material	Analysis	Nitrogen Rate lb N/1000 sq ft	Carrier Rate gal/1000 sq ft	% Leaf Blade Injury ²
Urea	46-0-0	1	4	5.2b
Urea	46-0-0	2	4	20.0a
Urea	46-0-0	1	3	4.0b
Urea	46-0-0	1	2	3.8b
Formolene	30-0-2	1	2	0.00
Formolene	30-0-2	1	1	0.00
Formolene	30-0-2	2	1	0.00
Formolene	30-0-2	1	0.5	0.00
Formolene	30-0-2	1.62	0.5	0.00
FLUF	18-0-0	1	2	0.00
FLUF	18-0-0	2	2	0.00
FLUF	18-0-0	1	1	0.00
FLUF	18-0-0	1	0.59	0.00
FLUF	18-0-0	2	1.18	0.00
FAN	16-2-5	1	1	0.00
FAN	16-2-5	1.6	1	5.0b
FAN	20-0-0	1	1	0.00
FAN	20-0-0	1.9	1	2.5bc

Table 1. Percent leaf blade injury with low volume fluid fertilizer applications on July 19.¹

¹All values represent the mean of 4 replications. Means in the same column with the same letter are not significantly different at the 0.05 level as determined by Fisher's Least Significant Difference test.

²Percent leaf blade injury is a visual rating of describing the total leaf blade injury appearing on the plots after fertilizer application.

THE EVALUATION OF LATE FALL FERTILIZATION

D. J. Wehner and J. E. Haley

INTRODUCTION

The idea behind late fall fertilization is to keep the shoot of the grass plant green as it enters winter. Because air temperatures in late fall restrict shoot growth, the food manufactured by the shoot is placed in reserve or used for root growth resulting in a healthier plant. Also, less fertilization is needed in early spring because the previous year's application promotes rapid greenup. The practice of late fall fertilization got started in the transiton zone where it is possible to keep turf green almost all year. Northern turfgrass managers have found that late fall fertilization also works well in the cool humid regions of the country. The purpose of this study is to evaluate fertilizer programs with and without a late fall application of nitrogen. In addition, several different nitrogen sources are being evaluated for application in late fall.

MATERIAL AND METHODS

The trial was established September 7, 1982 on a 3 month old stand of Baron Kentucky bluegrass and on an adjacent 3 month old stand of Kenblue Kentucky bluegrass. The materials being evaluated are urea, 45-0-0; IBDU, 31-0-0 and CIL-SCU, 32-0-0. Materials are applied as lbs nitrogen/1000 sq ft as follows:

Trt.	Following First Mowing	June 1	July 15	Sept. 1	Nov. 1
				2 2	
1	1.25 urea	1.0 urea	0.75 urea	1.0 urea	0
2	0	1.0 urea	0.75 urea	1.0 urea	1.25 urea
3	0	1.0 urea	0.75 urea	1.0 urea	1.25 SCU
4	0.5 urea	1.0 urea	0.75 urea	1.25 urea	0
5	0	2.0 IBDU	0	2.0 IBDU	0
6	0	2.0 SCU	0	2.0 SCU	0
7	0	2.0 IBDU	0	0	2.0 IBDU
8	0	2.0 SCU	0	0	2.0 SCU
9	0	1.0 IBDU	0	1.0 IBDU	1.5 IBDU
10	0	1.0 SCU	0	1.0 SCU	1.5 SCU
11	check				

Plot size is 3 x 12 feet and materials are applied by hand.

RESULTS

The results from both cultivars show similar trends with the exception that the Kenblue plots started active growth earlier in the spring than the Baron plots. The highest ratings for spring greenup were assigned to plots that had received a November application of urea, a September or November application of IBDU, or a November application of Sulfur Coated Urea (SCU). Apparently, there was not enough carryover from the September SCU application to provide maximum spring greenup. The June turf quality ratings for plots treated with two applications of IBDU per year were lower than turf receiving other treatments because of the lag between IBDU application and measurable turfgrass response. Throughout the rest of the growing season, all treatments provided acceptable turfgrass response and there were few significant differences between programs. We expect to maintain this study for three or four years to determine if any trends develop due to long term use of a particular program or source. The evaluation of a late fall fertilization program on a Baron Kentucky bluegrass. Table 1.

		47	I N C	000	sq It			Constant and					5.4+Len	1222			
	+							Spi Ling				X					
Material	Mowing	June	1 Jul	y 15	Sept	1 N	ov 1	4/19	5/6	6/2	6/15	6/22	7/13	7/28	8/19	9/22	10/28
Urea	1.25	1.0		2	1.0			2.0d	3.0d	6.0a	7.0a	7.0a	8.0a	8.0a	8.0a	8.3ab	7.7bc
Urea	ı	1.0	-7	2	1.0		1.25	5.7ab	5.7a	5.0c	6.3b	6.3ab	7.0b	7.3ab	7.3ab	8.0a-c	7.7bc
Urea +	1	1.0	- 7	5	1.0			5.0bc	5.3ab	5.0c	6.0bc	7.0a	d0.7	7.3ab	7.7ab	7.7a-d	8.3ab
scu							1.25										
Urea	•5	1.0	-7	5	1.25	10	1	2.3d	2.3de	4.0d	5.0d	5.7bc	6.7bc	7.3ab	7.3ab	8.3ab	8.0b
IBDU	1	2.0	1		2.0)	6.0a	5.7a	5.0c	5.0d	5.0cd	6.3cd	7.0b	8.0a	8.0a-c	9.0a
SCU	ı	2.0	1		2.0		1	4.7c	4.7bc	4.0d	5.7c	6.0b	8.0a	7.3ab	7.7ab	8.7a	9.0a
IBDU	1	2.0	1		I		2.0	4.7c	4.0c	4.0d	4.0e	4.7d	6.0d	6.7b	7.3ab	7.0cd	6.3d
SCU	1	2.0	1		ţ		2.0	5.7ab	5.3ab	5.7b	6.3b	7.0a	8.0a	7.3ab	8.0a	7.3b-d	6.3d
IBDU	1	1.0	1		1.0		1.5	6.0a	5.3ab	6.0a	5.0d	5.0cd	6.0d	6.7b	6.7b	6.7d	7.0cd
SCU	1	1.0	1		1.0		1.5	6.0a	5.7a	6.0a	6.0bc	6.3ab	7.0b	7.3ab	6.7b	8.3ab	6.7d
Control	1	ı	1		1		,	1.0e	2.0e	2.0e	3.0f	2.3e	3.0e	3.0c	3.3c	2.7e	3.7e

All values represent the mean of 3 replications. Means in the same column with the same letter are not significantly different at the 0.05 level as determined by Fisher's Least Significant Difference test.

²Spring greenup evaluations are made on a scale of 1-9, where 9 = very dark green and 1 = straw color.

³Quality evaluations are made on a 1-9 scale, where 9 = excellent turfgrass quality and 1 = very poor turfgrass quality. The evaluation of a late fall fertilization program on a Kenblue Kentucky bluegrass. Table 2.

Material M		A.	N	1000	sq ft								~			
Material M	+						- Spring	2			-	Quality				
	Daing	June	1 Ju	1JY 15	Sept	1 Nov	1 4/19	5/6	6/2	6/15	6/22	7/13	7/28	8/19	9/22	10/28
Urea	1.25	1.0	•	75	1.0	1	3.3ef	4.0c	6.3ab	7.0a	d0.7	7.3ab	7.7a	8.0ab	8.7a	8.3ab
Urea	1	1.0	•	75	1.0	1.2	5 7.0a-c	6.3a	5.3cd	6.0bc	6.7b	7.7a	8.0a	8.3a	8.7a	8.3ab
Urea +	1	1.0	•	75	1.0		6.3bc	6.3a	6.0a-c	6.3ab	d0.7	7.3ab	8.0a	8.7a	9.0a	8.3ab
scu						1.2	5									
Urea	\$°	1.0	•	75	1.25	1	3.7e	4.7bc	5.7b-d	6.3ab	6.7b	7.0a-c	7.7a	7.7ab	8.7a	8.3ab
IBDU	1	2.0		1	2.0	1	6.7bc	5.7ab	5.7b-d	4.7d	5.0d	6.0d	7.0ab	7.7ab	8.0ab	9.0a
scu	1	2.0		1	2.0	1	5.0d	5.3a-c	5.0d	5.3cd	7.0b	7.3ab	7.7a	8.3a	9.0a	8.7a
IBDU	1	2.0		1	I	2.0	6.0cd	5.3a-c	5.7b-d	5.0d	6.0c	6.7b-d	7.0ab	7.7ab	7.3b	6.7c
scu	1	2.0		1	i	2.0	7.3ab	6.0ab	6.3ab	7.0a	8.0a	7.7a	7.7a	8.3a	7.3b	6.7c
IBDU	1	1.0		1	1.0	1.5	8.0a	6.3a	6.7a	5.0d	5.0d	6.3cd	6.3b	7.0b	8.0ab	8.7a
scu	1	1.0		1	1.0	1.5	7.3ab	6.7a	6.0a-c	6.0bc	6.0c	6.0d	6.0b	7.0b	8.0ab	7.7b
Control	1	1		а Т	1	1	2.3f	2.3d	3.7e	3.3e	3.3e	4.0e	3.7c	4.0c	4.3c	3.7d

¹All values represent the mean of 3 replications. Means in the same column with the same letter are not significantly different at the 0.05 level as determined by Fisher's Least Significant Difference test.

²Spring greenup evaluations are made on a scale of 1-9, where 9 = very dark green and 1 = straw color.

³Quality evaluations are made on a 1-9 scale, where 9 = excellent turfgrass quality and 1 = very poor turfgrass quality.

LIQUID NITROGEN RESIDUAL STUDY

D. L. Martin and D. J. Wehner

INTRODUCTION

Nitrogen is generally considered the most important nutrient influencing turfgrass color and growth. Several new nitrogen materials are available to the lawn care industry. The main characteristic of these materials is that there is a reduced potential for turfgrass burn when applying them compared to a liquid urea solution. Questions exist concerning the length of turfgrass response to these new materials relative to urea. The purpose of this study was to see how long there is a measurable turfgrass color and growth response from a single application of several nitrogen sources that may be used by the lawn care industry. Sulfur Coated Urea and Nitroform were included in this study as slow release sources for comparison.

METHODS AND MATERIALS

This experiment was initiated June 21, 1983 on a Kentucky bluegrass stand composed of the cultivars Bristol, Bonnieblue and Parade. The turfgrass stand was established in the fall of 1982 and only received fertilizer during establishment. Each treatment was replicated four times as a 3 x 12 feet plot in a randomized complete block design. The liquid treatments were applied to the plots with a CO2 powered backpack sprayer. The spray volume applied was 4 gallons per 1000 sq ft, using an 8015E nozzle. Granular materials were applied by hand. The first application of all treatments except FAN was made on June 21, 1983. The first FAN treatments were applied on June 28, as FAN was not available for application on the date the study was initiated. A second application of all materials was made on August 24, 1983.

The nitrogen sources applied as liquids in this study include Super 60 (55-0-0), Urea (46-0-0), FLUF (18-0-0), FAN (20-0-0), Cleary's 16-2-4, FLUF + Trugreen, Formolene (30-0-2), Mello 15-3-6, and Nitroform (38-0-0). Trugreen is a micronutrient fertilizer. Materials applied as granulars included Sulfur Coated Urea (CIL 32-0-0) and Oxamide (32-0-0). A control treatment which received no nitrogen source was included in each replication. All fertilizer treatments were applied at 1 lb of actual nitrogen per 1000 sq ft.

Color and growth rates were monitered on a weekly basis in this study. Color was rated visually, while growth rate was measured on the basis of fresh clipping weights. Clippings were not returned to the plots after being weighed. The second application of materials was made when the color and growth response of the fertilized plots were no longer significantly different from the controls. After the treatments were applied, the plots were irrigated to wash material from the leaves into the soil. Irrigation practices in the study duplicated those of a home lawn situation, with the plots receiving irrigation to avoid wilting of the turfgrass.

RESULTS

Results of this first season's data must be viewed with the knowledge that the plots had no nitrogen fertilization since their establishment in the fall of 1982. It should also be noted that a heavy rain followed within days of both applications of the fertilizers being tested in this study.

As expected, Urea gave the best initial color response within the first week after the first application (Table 1). Super 60 treated plots received color ratings very similar to those of Urea. Although FLUF + Trugreen treated plots showed a tendancy for higher color ratings than the FLUF treated plots, the differences were not significant. Similar color responses were obtained throughout the study from plots treated with Urea, FLUF, FAN, Cleary's 16-2-4, Formolene and Mello 15-3-6. Plots treated with Oxamide, a slow release material, did not give a satisactory color response until the fourth week after application. The color and clipping weights of all fertilizer treated plots approached those of the check plots seven weeks after the first application of fertilizers. After an initial slow response, plots treated with Oxamide rated very high in color ratings throughout the study. Nitroform treated plots showed an increase in color response relative to the other plots as the season progressed. This increase in color and growth response can be expected of Nitroform and other slow release materials, as a residual base is built in the soil over a period of time. Table 2 shows the weights of the clippings taken from the plots during the study. The large differences in the clipping weights from week to week were due primarily to differences in rainfall.

					Color Rat:	ings ²					
Treatments	6/28	7/5	7/12	7/19	7/26	8/2	8/9	8/16	8/23	8/31	i
Super 60	4.8bc	5.5c-e	4.8cd	5.30	6.8c-e	6.5bc	5.8a	5.5a	5 • 5a	8.0a	i
Urea	5.5a	6.3b	5.5a-c	6.0b	7.0b-d	6.8b	5.8a	5.8a	5.8a	8.0a	
FLUF	5.0ab	5.5c-e	4.8cd	5.8bc	6.5de	6.5bc	5.8a	5.8a	5.8a	7.8ab	
FAN*	3.5d	6.0bc	5.8ab	6.0b	6.8c-e	6.5bc	5.5a	5.5a	5.5a	8.0a	
Cleary's 16-2-4	4.8bc	5.5c-e	4.8cd	6.0b	6.8c-e	6.5bc	5.8a	5.5a	5.8a	8.0a	
Oxamide	3.3d	5.0ef	4.5de	6.8a	7.8a	7.5a	6.0a	6.0a	6.0a	7.5b	
FLUF + Trugreen	4.8bc	5.5c-e	4.8cd	5.8bc	6.5de	6.8b	6.0a	6.0a	6.0à	8.0a	
Formolene	5.3ab	6.3b	5.3b-d	6.0b	7.0b-d	6.8b	6.0a	5.8a	5 . 8a	8.0a	
Mello 15-3-6	5.3ab	5.8b-d	5.0b-d	5.8bc	7.3a-c	6.8b	5.5a	5.8a	5.8a	8.0a	
Nitroform	4.30	5.3de	4.8cd	5.8bc	6.8c-e	6.5bc	6.0a	6.0a	6.0a	8.0a	
CIL-SCU	5.0ab	7.0a	6.3a	7.0a	7.5ab	7.5a	6.0a	5.8a	5.8a	8.0a	
Control	3.3d	4.5f	3.8e	4.3d	6.3e	6.0c	5.5a	5.5a	5.5a	6.50	

1 .

(continued)

- 49 -

4	1	1
August 2		
and		
21		
June		
applied		
treatments		
ert	 IS ²	
[ertiliz		
arious f	Coloi	
0		
ss		
bluegra		
Kentucky		
of		
sponse		
Continu		
1.		
lable		
5	1.1	- 2

					COLOF RAT	'Ings'					
Treatments	1/6	9/14	9/21	9/28	10/5	10/12	10/19	10/26	11/2	11/9	
Super 60	8.0bc	7.50	7.0cd	7.3bc	5.0b	4.5bc	4.5d	5.3de	5.00	5.0c	
Urea	8.0bc	7.8bc	7.3bc	7.3bc	5.0b	4.8bc	4.8cd	5.8cd	5.3bc	5.3bc	
FLUF	8.0bc	7.8bc	7.0cd	7.3bc	5.0b	4.5bc	4.8cd	5.3de	5.3bc	5.0c	
FAN*	7.8c	7.8bc	7.0cd	7.3bc	5.3b	4.5bc	4.5d	5.3de	5.00	5.0c	
Cleary's 16-2-4	8.0bc	7.8bc	7.0cd	7.3bc	5.0b	4.5bc	4.5d	5.5cd	5.3bc	5.3bc	
Oxamide	8.5ab	8.3a	8.0a	8.0a	6.3a	5.5a	6.0a	6.8a	6.0a	6.3a	
FLUF + Trugreen	7.80	8.0ab	7.3bc	7.8ab	5.5b	4.8bc	5.00	6.0bc	5.8ab	5.8ab	
Formolene	7.8c	8.3a	7.3bc	7.8ab	5.3b	4.5bc	4.8cd	5.8cd	5.3bc	5 . 3 bc	
Mello 15-3-6	8.0bc	8.0ab	7.3bc	7.5a-c	5.5b	4.8bc	4.8cd	5.3de	5.0c	5 . 0c	
Nitroform	8.0bc	8.0ab	7.5b	7.5a-c	5.5b	5.0ab	5.00	6.0bc	5.8ab	5.8ab	
CIL-SCU	8.8a	8.3a	8.0a	7.8ab	6.3a	5.5a	5.5b	6.5ab	6.0a	5.8ab	
Control	6.5d	7.0d	6.83	7.00	4.3c	4.3c	4.5d	4.8e	4.8c	4.8c	

¹All values represent the mean of 4 replications. Means in the same column with the same letter are not significantly different at the 0.05 level as determined by Fisher's Least Significant Difference test.

²Color evaluations are made on a scale of 1 to 9, where 9 = very dark green and 1 = straw colored.

*FAN was applied initially on June 28, 1983.

Clipping weight response of Kentucky bluegrass to various fertilizer treatments applied June 21 and August 24.¹ Table 2.

				Clipping	Weights in	Grams		
Treatments	6/28	7/5	7/12	7/19	7/26	8/2	8/9	8/16
Super 60	79.3a	94.1bc	58.8ab	81.5bc	61.2b	55.8b	60.20	20.9bc
Urea	76.4a	101.9b	61.3ab	79.6bc	57.6b	54.3b	56.2cd	24.2a-c
FLUF	76.7a	91.3b-d	60.6ab	82.7bc	63.5b	57.5b	59.0cd	21.8bc
FAN*	45.3b	71.7d-f	60.9ab	87.8b	63.0b	56.4b	57.9cd	17.3c
Cleary's 16-2-4	64.4ab	76.9c-e	52.1bc	68.0cd	56.1b	54.8b	52 • 6cd	18.9bc
Oxamide	46.2b	59.8ef	60.5ab	106.6a	103.5a	91.7a	86.0a	32.7a
FLUF + Trugreen	67.3ab	78.2c-e	54.9bc	73.5b-d	58.0b	55.9b	56.1cd	23.1a-c
Formolene	76.0a	100.6b	62.4ab	82.6bc	67.6b	57.6b	62.7bc	26.3a-c
Mello 15-3-6	82.4a	99.5b	61.6ab	84.2bc	64.9b	60.8b	62.4bc	22.9a-c
Nitroform	61.1ab	69.3ef	61.7ab	73.1b-d	57.0b	54.5b	60.60	24.4a-c
CIL-SCU	75.6a	135.2a	76.5a	116.8a	91.7a	79.9a	76.6ab	28.6ab
Control	48.1b	55.8f	38.4c	56.5d	40.9c	40.7c	45.1d	17.8c

(continued)

			CI	ipping Weigl	hts in Grams			
Treatments	8/23	8/31	7/6	9/14	9/21	9/28	10/5	
Super 60	52.5a-c	130.4bc	· 87.5c-e	53.2c-e	39.9cd	21.3d	12.3c-e	
Urea	49.7bc	138.3a-c	88.2c-e	54.1c-e	46.3c	23.1cd	14.4b-e	
FLUF	51.1bc	123.9bc	76.6e	45.9ef	39.8cd	21.9cd	10.8de	
FAN*	46.5bc	138.5a-c	90.6c-e	50.4de	43.8c	22.6cd	13.1c-e	
Cleary's 16-2-4	48.1bc	118.4c	79.5de	48.2de	40.6cd	21.3d	13.5c-e	
Oxamide	66.0a	120.3c	80.4de	71.7b	64.0b	34.3ab	25.6a	
FLUF + Trugreen	51.4bc	130.8a-c	91.3b-e	51.9c-e	46.7c	21.9cd	16.5b-d	
Formolene	55.3a-c	160.5a	100.8bc	65.4bc	54.3bc	26.2cd	18.9a-c	
Mello 15-3-6	52.9a-c	150.3ab	108.5b	58.1b-e	49.4c	25.3cd	15.1b-e	
Nitroform	59.8ab	140.5a-c	94.9b-d	60.8b-d	53.0bc	29.0bc	21.2ab	
CIL-SCU	58.1a-c	152.2ab	129.2a	93.2a	79.0a	36.8a	21.2a	
Control	44.6c	82.0d	49.1f	33.0f	27.73	11.7e	9.5e	

All values represent the mean of 4 replications. Means in the same column with the same letter are not significantly different at the 0.05 level as determined by Fisher's Least Significant Difference test.

1983. *FAN was applied initially on June 28,

THE EFFECTS OF SAND TOPDRESSING ON A HEAVILY THATCHED CREEPING BENTGRASS GREEN

T. W. Fermanian and J. E. Haley

INTRODUCTION

It is generally agreed that topdressing bentgrass greens is a valuable practice. However, opinions often vary as to what constitutes a good topdressing program. In recent years, interest has increased in a pure sand topdressing program developed by Dr. John Madison and his associates at the University of California. This involves the application of 100% sand to the surface of the turfgrass stand on a routine basis throughout the year.

The purpose of this study is to examine the effects of pure sand and modified high sand mixes as topdressing materials on the degradation of thatch, its influence on other soil properties and its influence on turfgrass quality.

MATERIAL AND METHODS

The study uses a split plot design with three replications per treatment. The main treatments consist of three replication intervals and a check.

They include:

- 1) biweekly applications, no cultivation
 - 2 cu ft material/1000 sq ft
- 2) monthly applications
 vertical mowing in April, May, Sept., Oct.
 4 cu ft material/1000 sq ft
- bimonthly applications vertical mowing in April, Oct.
 4 cu ft material/1000 sq ft

The subplots consist of 5 materials. They are a fine sand, a medium sand, a 9:1 sand-soil mix, and 8:1:1 sand-soil-peat mix, and a 9:1 sand-soil mix with a wetting agent.

The fine sand is a washed blend sand with the following particle size analysis:

Very coarse	0.78
Coarse	1.3%
Medium	59.8%
Fine	34.3%
Very fine	3.48
Silt and clay	0.5%

The medium sand is a washed mason sand with the following particle size analysis:

Very coarse	3.9%
Coarse	14.3%
Medium	75.3%
Fine	6.5%
Very fine	0.0%
Silt and clay	80.0

Both these sands have the minimum analysis of 75% of the particles in two adjacent size ranges. This is in accordance with Madison's recommendations for sands for topdressing and greens construction.

RESULTS

The first treatments were applied July 13, 1981 to a 'Washington' creeping bentgrass turf mowed at 1/4 inch. Plot size is 6' x 10'. All of the mixes were blended with the medium sand. The plots receive a total of 6 lbs N/1000 sq ft/year. The wetting agent, Aquagro, was applied at a rate equal to 32 oz/1000 sq ft/year.

Treatments for 1983 began May 16. Plot maintenance and treatment application followed the 1981 schedule. Turfgrass evaluations made during the 1983 growing season included quality and dollar spot infection (Table 1 and 2).

After three years of topdressing, no consistent differences were observed between plots receiving different topdressing materials. There were also no significant interaction between various topdressing programs and materials. In general, each topdressing program provided better overall quality than the non-treated control (Table 1.) When the disease, dollar spot, did appear on the plots, all topdressed plots showed a greater level of infection than did the untreated plots during the month of August.

Due to the integration of topdressing materials into the thatch layer, physical measurements of thatch were no longer possible. During June, representative samples, approximately 4" in depth, were taken from each plot for laboratory analysis of the percentage of organic matter. This technique was necessary to estimate the total reduction in thatch as compared to untreated turf. Each sample was burned in a furnace to remove all traces of organic matter. The loss of weight was then used to determine the percent of organic matter in the original sample (Table 3). All treatments evaluated showed a significant reduction in organic matter as compared to the non-treated sample. To express this as a reduction in the total thatch on the green, each organic matter determination was compared to the percent organic matter remaining in the untreated greens and expressed as a percentage. The results indicate that the pure sand materials were equally effective in removing thatch from the upper profile of the greens.

		Qual	lity ²			Dollar	· Spot ⁴	
Timing	5/10	6/13	7/11	8/22	All 3 Dates	6/22	8/22	
<pre>1 application/2 weeks; 2 cu ft material/1000 sq ft</pre>	5 • 5 5	6 • 5a	6.3a	5.9a	6.0a	5.0a	6.2b	
<pre>1 application/month vertical mowing Apr May Sept Oct 4 cu ft material/1000 sq ft</pre>	5.6a	6.7a	6.3a	5.6a	6.0a	5 . 1a	5.4b	
<pre>1 application/2 months vertical mowing Apr Oct 4 cu ft material/1000 sq ft</pre>	6.1a	6 • 5a	5.9a	5.6a	6.0a	5.1a	6.5b	
control no applications made	3.5b	3.5b	5.4a	5.8a	4.5b	5.7a	8 . 1a	

significantly different at the 0.05 level as determined by Fisher's Least Significant Difference test.

2 Quality evaluations are made on a 1-9 scale where 9 = excellent turfgrass quality and 1 = very poor turfgrass quality.

³Values represent the mean of 60 scores obtained from 15 replications and 4 evaluation dates.

⁴Disease evaluations are made on a 1-9 scale where 9 = no visible evidence of disease and 1 = complete necrosis.

-55-

		Qual	ity ²			Dollar	Spot ⁴
faterials	5/10	6/13	7/11	8/22	All Dates ³	6/22	8/22
ine sand	5.8a	5.7bc	5.8a	5.5a	5.7ab	4.8b	6.5a
ledium sand	4.7b	5.30	5.7a	5.8a	5.4b	5.2ab	6.7a
and:soil, 9:1	5.3ab	6.0ab	6.2a	5.6a	5.8ab	5.6ab	6.3a
and:soil:peat, 8:1:1	5.0b	5.6bc	5.6a	5.7a	5.5b	4.8b	6.2a
and:soil, 9:1 + wetting agent	5.0b	6.4a	6.6a	6.0a	6.0a	5.9a	7.0a

Table 2. Evaluation of sand topdressing materials.

All values represent the mean of 12 replications. Means in the same column with the same letter are not significantly different at the 0.05 level as determined by Fisher's Least Significant Difference test. ²Quality evaluations are made on a 1-9 scale where 9 = excellent turfgrass quality and 1 = very poor turfgrass quality.

³Values represent the mean of 48 scores obtained from 12 replications and 4 evaluation dates.

⁴Disease evaluations are made on a 1-9 scale where 9 = no visible evidence of disease and 1 = complete necrosis.

% OM	% Reduction in OM*
5.9b	71
4.5b	78
8.5b	58
7.5b	63
7.3b	64
20.3a	
	<pre>% OM 5.9b 4.5b 8.5b 7.5b 7.3b 20.3a</pre>

Table 3. Oxidation of thatch from samples taken from a sand topdressing materials evaluation.

Flsd .05 = 3.2

*Determined of %reduction = (1-(treated OM/untreated OM)) x 100.

GROWTH RETARDATION OF KENTUCKY BLUEGRASS TURF

T. W. Fermanian and J. E. Haley

INTRODUCTION

In recent years, many new chemical compounds have been evaluated for their ability to regulate turfgrass growth. The two components of growth most affected are vegetative shoot growth and seedhead production. For many compounds, the regulating effects on these two components have been inconsistant. In a continuing effort to evaluate potential growth retardants, an experiment was developed to determine the efficacy of mefluidide (Embark), PP-333, MON 4621, MON 4623 and EL-500 on retarding Kentucky bluegrass growth.

METHODS AND MATERIALS

Growth retardants were applied on May 16, 1983. Treatments and rates are listed in Table 1. All Fluid materials were applied with a CO_2 propelled backpack sprayer at a spray volume of 40 gallons per acre. Granular materials were applied by hand. Individual plots were mowed at two inches when the turf reached three inches in height. Plot size was 3 x 10 feet and plots were irrigated as required throughout the season to prevent wilt. The area was fertilized June 14 with 1 lb N/1000 sq ft.

To evaluate the effect surfactants have on the efficacy of growth retardants, Embark was applied in solutions using the surfactant X77 or XM12. To further investigate the effect time of application has on growth retardant efficacy additional plots were treated with MON 4621, MON 4623 and Embark on June 7, 1983.

RESULTS

When the plots were evaluated for quality two weeks after the application, Embark at both rates, PP 333 plus Embark at both rates, and most of the Embark surfactant combinations showed a reduction of quality as compared to the controls. Quality evaluations taken six weeks after application showed a great improvement for most treatments with only the MON 4623 treatment at 5 lb ai/A, Embark at .38 lb ai/A, and PP 333 plus Embark at .187 + .38 lb ai/A showing reduced quality (Table 2). All plots recovered fully at the end of the effective period of retardation, approximately 8 to 10 weeks after application.

The major value in applying a plant growth retardant is to reduce the volume of clippings removed from the turf and to lower the mowing requirements. An analysis of clippings removed over a 10 week period indicated significant reductions in the total length of clippings removed for all retardant treatments as compared to the check (Table 2). The range of this reduction was from 22 percent for both rates of MON 4623 to 47 percent for the PP 333 treatment. Mowing frequency, however is a better indicator of the true cost of a mowing operation. An analysis of the number of mowings that occurred over the same 10 week period is also listed in Table 2. Again, all treatments had a significant reduction in the number of mowings as compared to the control. These reductions ranged from 17 percent for MON 4623 to 47 percent for the PP 333 treatment.

All retardants evaluated in the study were effective in reducing the mowing requirements and providing slower growth to Kentucky bluegrass. However,

some reduced quality was also exhibited by many materials which should be a consideration for their use.

No significant differences in mowing frequency between treatments applied on May 16 and treatments applied June 7 were observed (Table 3). Increased clippings removed after the first application period reflected a faster growth rate early in the season.

Materials Applied May 16, 1983	Rate lb ai/A	Materials Applied June 7, 1983	Rate lb ai/A
MON 4621	2.5	MON 4621	2.5
MON 4621	5.0	MON 4621	5.0
MON 4623	2.5	MON 4623	2.5
MON 4623	5.0	MON 4623	5.0
Embark	0.25		
Embark	0.38	Embark	0.38
EL-500	1.25		
PP-333	1.25		
PP-333 +	0.125 +		
Embark	0.38		
PP-333 +	0.187 +		
Embark	0.38		
Embark +	0.2 +		
XM12	0.5% v/v		
Embark +	0.2 +		
XM12	1.0% v/v		
Embark +	0.2 +		
x77	1.0% v/v		
Embark +	0.38 +		
XM12	0.5% v/v		
Embark +	0.38 +		
XM12	1.0% v/v		
Embark +	0.38 +		
X77	1.0% v/v		

Table 1. Materials and rates of application of growth retardants on a Kentucky bluegrass turf.

	Rate	Clippings Removed ²	Mowing Frequency ³	Qua	lity ⁴
Material	lb ai/A	5/16-7/25	5/16-7/25	6/1 16 DAT	6/29 44 DAT
Mon 4621	2.5	24.5d	7.7bc	6.7ab	5.7b-d
Mon 4621	5.0	28.1bc	7.7bc	7.0a	6.0a-c
Mon 4623	2.5	29.9b	8.3b	6.7ab	6.3ab
Mon 4623	5.0	29.9b	8.3b	6.3a-c	5.0cd
Embark	0.25	25.1c	7.0c	6.0b-d	5.7b-d
Embark	0.38	27.1bc	7.7bc	5.7cd	4.7d
EL-500	1.25	24.6c	6.7c	7.0a	6.3ab
PP-333	1.25	17.8d	5.3đ	7.0a	7.0a
PP-333 +	0.125 +	25.4c	7.0c	6.0b-d	5.7b-d
Embark	0.38				
PP-333 +	0.187 +	23.9c	6.7c	5.3d	5.0cd
Embark	0.38				
Embark +	0.2 +	27.5bc	7.3bc	6.3a-c	6.0a-c
XM12	0.5% v/v				
Embark +	0.2 +	27.3bc	7.7bc	6.3a-c	5.7b-d
XM12	1.0% v/v				
Embark +	0.2 +	27.4bc	7.3bc	6.0b-d	5.7b-d
X77	1.0% v/v				
Embark +	0.38 +	27.9bc	7.7bc	6.0b-d	5.3b-d
XM12	0.5% v/v				
Embark +	0.38 +	25.7bc	7.0c	5.3d	6.0a-c
XM12	1.0% v/v				
Embark +	0.38 +	26.4bc	7.7bc	5.7cd	6.0a-c
X77	1.0% v/v				
Control		38.2a	10.0a	7.0a	6.3ab

Table 2. The evaluation of several plant growth retardants applied to a Kentucky bluegrass turf.

¹All values represent the mean of 3 replications. Means in the same column with the same letter are not significantly different at the 0.05 level as determined by Fisher's Least Significant Difference test.

²Clippings removed refers to the average total length in cm of shoot growth removed from 5/16 thru 7/25.

³Mowing frequency represents the average number of mowings performed per treatment from 5/16 thru 7/25.

4 Quality evaluations are made on a 1-9 scale where 9 = excellent turfgrass quality and 1 = very poor turfgrass quality. Evaluations were 16 and 44 days after treatment (DAT). Table 3. Evaluation of plant growth regulator application dates.

	Clippings Removed	Mowing Frequency		
Date Applied	7 weeks after treatment ²	7 weeks after treatment		
May 16	20.4a	5.3a		
June 7	16.1b	5.1a		

^TAll values represent the mean of 3 replications. Means in the same column with the same letter are not significantly different at the 0.05 level as determined by Fisher's Least Significant Difference test.

²Clippings removed refers to the average length in cm of shoot growth removed in the seven weeks following growth regulator application.

³Mowing frequency represents the average number of mowings performed per application date for seven weeks following growth regulator application.

GROWTH RETARDANTS FOR LOW AND MEDIUM MAINTENANCE TURFS

T. W. Fermanian and J. E. Haley

INRODUCTION

Turf growth retardants are generally applied to turfs under a low level of maintenance. That is, turfs receiving little irrigation and fertilization. To measure the effect of growth retardants on turf receiving routine irrigation a study was established to investigate the effects of EL-500 (1.25 lb ai/A), MON 4621 (2.5 lb ai/A), and Embark (0.38 lb ai/A) on an improved Kentucky bluegrass stand (cv. Baron) and on a nonirrigated common Kentucky bluegrass turf.

METHODS AND MATERIALS

Plot size was 6 x 10 feet and all materials were applied with a spray volume of 40 gallons per acre with a CO₂ propelled backpack sprayer. The plots are mowed at two inches when they reach three inches in height. The 'Baron' Kentucky bluegrass plots were irrigated, receiving a total of 2 inches of water per week.

RESULTS

When growth retardants were applied to common Kentucky bluegrass the turf exhibited little or no loss of quality over the period of activity. When the same retardants were applied to the improved Kentucky bluegrass stand, however, some reduction in quality was measured. The improved turf stand was growing very slowly. Therefore, quality losses were more prominent on the slow growing turf. The Embark treatment showed a significant reduction in quality throughout the entire study and MON 4621 treatments showed a delayed reduction beginning three weeks after application and continuing for several weeks. After the 10 week period of activity, all plots recovered from any reductions in quality.

Since turfgrass growth was very slow on all plots in the improved Kentucky bluegrass trials, including the control, no significant reduction in growth rates were measured for any growth retardant. On the common Kentucky bluegrass stand, however, all three retardants showed significant reductions in both the total length of clippings removed and the frequency of mowing (Table 2). There were, however, no differences between retardants.

General observations of the improved Kentucky bluegrass experiment was its general lack of growth. In comparison to the 38 centimeters of clippings removed from the control in the common Kentucky bluegrass trials, only 8 centimeters were removed from the control in the improved Kentucky bluegrass trial The observed slow growth is not typical of medium maintained Kentucky bluegrass turf, therefore, the results of this experiment are somewhat misleading. It also contributed to the injury observed on these plots (Table 1). No phytotoxicity was observed on the common Kentucky bluegrass turf due to the relatively rapid growth of both the treated and control plots.

	Rate	Phytotoxicity ²			
Materials	lb ai/A	6/1 1 WAT	6/6 2 WAT	6/13 3 WAT	7/1 5 WAT
Embark	0.38	6.0b	6.0c	5.0c	5.0c
Mon 4621	2.5	8.3a	8.7a	6.7b	7.3b
EL-500	1.25	8.7a	7.7b	8.0a	9.0a
Control		9.0a	9.0a	9.0a	9.0a

Table 1. Injury to an improved 'Baron' Kentucky bluegrass from plant growth retardants.

All values represent the mean of 3 replications. Means in the same column with the same letter are not significantly different at the 0.05 level as determined by Fisher's Least Significant Difference test.

2 Phytotoxicity ratings are made on a scale of 1-9, where 9 = no visible injury to the turf and 1 = complete necrosis. Evaluations were made 1 to 5 weeks after treatment (WAT).

	Rate	Clippings Removed ²	Mowing Frequency ³	
Material	lb ai/A	5/24 - 7/25	5/24 - 7/25	
Embark	0.38	28.5b	8.0b	
Mon 4621	2.5	31.0b	8.7b	
EL-500	1.25	30.6b	8.7b	
Control		38.3a	10.3a	

Table 2. Evaluation of three plant growth regulators on a nonirrigated common Kentucky bluegrass turf.

All values represent the mean of 3 replications. Means in the same column with the same letter are not significantly different at the 0.05 level as determined by Fisher's Least Significant Difference test.

²Clippings removed refers to the average length in cm of shoot growth removed from 5/24 thru 7/25.

³Mowing frequency represents the average number of mowings performed per treatment from 5/24 thru 7/25.

KENTUCKY BLUEGRASS CULTIVAR RESPONSE TO THE APPLICATION OF MON 4621, A PLANT GROWTH RETARDANT

T. W. Fermanian and J. E. Haley

INTRODUCTION

While the response of several cultivars of Kentucky bluegrass to MON 4621 has been evaluated for the past several years, many cultivars of Kentucky bluegrass have not been tested. Because of the variability in growth habit and response to cultural practices exhibited by the wide range of bluegrass varieties, there is a need to also evaluate their response to growth retardants. Meeting these objectives would require the use of an area where multiple cultivars were growing in isolated plots.

The USDA Kentucky bluegrass trial planted in September 15, 1980 provided an ideal location to evaluate individual cultivar responses to the application of MON 4621. Due to space limitations, plot sizes were inherently small. This experiment, however, provided valuable information for future evaluation of cultivar response to plant growth retardants.

METHODS AND MATERIALS

The USDA Kentucky bluegrass trial consists of 84 cultivars each replicated three times. On May 5, 1983 half of each 6 x 5 foot plot was treated with MON 4621 at a rate of 2.0 lb ai/A. During the growing season the area was fertilized with 4 lb N/1000 sq ft. No preemergence crabgrass control herbicide was used. The area was irrigated as needed to prevent wilt.

RESULTS

Each Kentucky bluegrass cultivar growth response to the application of MON 4621 was evaluated by measuring the total plant height prior to mowing, four weeks after treatment was applied. In general, most cultivars showed a significant reduction in the growth rate as compared to their untreated half. In the case of BA-61-91, Baron, Birka, Bristol, Enmundie, Glade, Harmony, Holiday, Merit, Nugget, PSU 191, S. D. Common, Vanessa, Victa, Welcome, and 1528T, no differences in growth rate could be measured. Quality ratings were recorded both three weeks and seven weeks after treatment. With a few exceptions, most cultivars did not show any loss in quality as compared to their untreated half. A20-6, MER PP 300, and Piedmont showed a significnat reduction in quality for both dates of evaluation. While the disease dollar spot was observed after the period of activity had ended, no differences were found between treated and untreated portions of the same cultivar.

The results of this study indicate that there is tremendous variation among Kentucky bluegrass cultivars for susceptibility to the effect of plant growth retardants. This study will be followed up in future years to evaluate the long range effects of plant growth retardant use.

Cultivar	Treatment	Height ¹ 5/31 4 WAT	Quality ²		Dollar Spot ³	
			5/25 3 WAT	6/21 7 WAT	7/25 11 WAT	
A-34	Mon 4621	6.2*	5.7	6.3	6.3	
	check	8.4	6.7	6.3	6.0	
Adelphi	Mon 4621	5.7*	5.3	6.3	6.7	
	check	7.2	7.0	6.3	6.3	
Admiral	Mon 4621	6.2*	5.7	4.7	6.3	
	check	8.3	6.7	6.0	6.7	
America	Mon 4621	5.4*	5.0	5.0	5.7	
	check	7.5	6.3	5.3	5.0	
Apart	Mon 4621	6.1*	4.7*	5.3	5.7	
	check	8.6	6.7	6.0	5.7	
Argyle	Mon 4621	7.4*	4.0*	5.3	6.0	
	check	8.9	5.3	5.7	6.7	
Aspen	Mon 4621	5.9*	5.3	4.7	5.0	
	check	8.2	6.3	5.3	5.0	
A20	Mon 4621	6.2*	6.7	4.0	4.0	
	check	8.6	8.3	5.7	5.0	
A20-6	Mon 4621	5.9*	6.7*	3.0*	3.3	
	check	7.9	8.7	4.3	4.0	
A20-6A	Mon 4621	6.3*	7.0	4.7	4.0	
	check	8.2	8.3	5.7	4.3	
BA-61-91	Mon 4621	5.5	4.3	5.0*	6.3	
	check	7.1	5.3	6.7	6.7	
Banff	Mon 4621	6.0*	6.0	5.3	6.0	
	check	8.6	7.7	5.7	5.3	
Barblue	Mon 4621	5.7*	5.3*	4.3	5.7	
	check	7.8	7.0	6.0	5.3	

Table 1. The effect of Mon 4621 on 84 Kentucky bluegrass cultivars.

(continued)
		Height ¹	Qual	.ity ²	Dollar Spot ³
		5/31	5/25	6/21	7/25
Cultivar	Treatment	4 WAT	3 WAT	7 WAT	11 WAT
Baron	Mon 4621	E 6	5 2	6.2	
Baron	mon 4621	7.9	5.3	7 3	7.5
	CHECK	1.5	0.0	1.5	7.0
Bayside	Mon 4621	7.5*	5.7	5.0	6.0
	check	9.2	6.3	6.0	6.7
Birka	Mon 4621	6.7	6.0	5.0	6.3
	check	8.0	7.7	6.3	7.3
Bonnieblue	Mon 4621	5.8*	6.3	5.0	5.7
Domitostac	check	8.1	7.3	6.0	5.7
Bono	Mon 4621	6.7*	6.7	5.3*	5.3
	check	8.5	7.7	6.7	6.3
Bristol	Mon 4621	5.5	5.0	4.7	5.7
	check	8.2	6.3	5.7	6.0
CEB VB 3965	Mon 4621	6.2*	6.3	5.7*	5.0
	check	8.0	7.3	7.0	5.7
Cello	Mon 4621	6.1*	6.3	4.7	4.7
	check	8.2	8.0	6.0	5.0
Charlotte	Mon 4621	5.7*	5.7	4.3	4.7
	check	8.3	7.3	4.7	4.7
Cheri	Mon 4621	5.4*	5.7	5.0	6.7
	check	7.5	6.7	6.0	6.7
Columbia	Mon 4621	5.7*	6.3	4.7	6.0
	check	8.7	7.0	5.7	6.0
Dormie	Mon 4621	6.8*	5.0	4.7	4.7
	check	8.1	5.7	4.3	4.3
Eclipse	Mon 4621	6.1*	7.0	7.3	7.7
	check	8.4	8.0	7.3	7.7
Enmundi	Mon 4621	7.4	7.0	6.7	6.7
	check	9.0	7.7	7.7	6.7

(continued)

- 67 -

		Height ¹	Qual	.ity ²	Dollar Spot ³	
Cultivar	Treatment	5/31 4 WAT	5/25 3 WAT	6/21 7 WAT	7/25 11 WAT	
Enoble	Mon 4621	6.3*	5.7	3.7	4.7	
	CHECK	0.5	7.0	5.5	5.1	
Escort	Mon 4621	6.3*	7.0	4.7	5.3	
	check	8.6	7.7	5.3	4.3	
Fylking	Mon 4621	6.1*	6.3*	5.7	6.3	
	check	8.8	7.7	6.3	6.3	
Geronimo	Mon 4621	6.7*	5.7	5.0	5.3	
	check	8.8	6.7	5.7	5.7	
Glade	Mon 4621	6.3	5.0	5.7	7.3	
	check	8.0	6.3	6.7	7.0	
н-7	Mon 4621	7.0*	7.7	5.0	6.0	
	check	8.6	7.7	5.7	6.3	
Harmony	Mon 4621	6.4	5.0	4.0	4.3	
	check	7.6	6.3	5.0	4.7	
Holiday	Mon 4621	6.3	6.0	4.3	4.3	
	check	7.4	6.3	5.0	5.0	
I-13	Mon 4621	6.0*	8.0	4.7*	4.3*	
	check	8.1	8.3	6.3	5.7	
Kenblue	Mon 4621	7.7*	3.0*	4.7	5.3	
	check	9.5	4.3	5.0	5.3	
Kimono	Mon 4621	6.2*	6.0	4.3	3.3	
	check	7.9	7.7	6.0	5.3	
K1-152	Mon 4621	6.2*	6.3	5.0	5.7	
	check	8.0	7.0	5.7	6.0	

(continued)

		Height	Qual	lity ²	Dollar Spot ³
Cultivar	Treatment	5/31 4 WAT	5/25 3 WAT	6/21 7 WAT	7/25 11 WAT
к3-162	Mon 4621	7.2*	4.0	6.0	7.0
	check	9.5	5.0	6.0	6.7
к3-178	Mon 4621	6.1*	6.0	5.3	6.3
	check	9.1	7.0	6.0	6.0
к3-179	Mon 4621	5.9*	6.0	6.0	7.0
	check	8.1	7.0	6.7	5.7
Lovegreen	Mon 4621	6.7*	6.0	5.3	4.7
	check	8.3	7.7	6.0	5.0
Majestic	Mon 4621	5.8*	5.3	4.7	5.3
	check	8.3	6.3	5.7	5.3
MER PP 300	Mon 4621	5.5*	4.3*	5.3*	6.0
	check	7.3	6.0	6.7	6.7
MER PP 43	Mon 4621	6.7*	5.3	3.3	4.0
	check	9.0	6.7	5.0	5.0
Merion	Mon 4621	6.1*	6.3*	5.3	7.3
	check	9.3	7.7	6.3	7.3
Merit	Mon 4621	5.1	5.3	5.0	6.0
	check	6.7	6.0	6.3	6.3
MLM 18011	Mon 4621	6.0*	5.7	5.3*	7.0
	check	8.0	6.7	6.7	7.3
Mona	Mon 4621	6.1*	6.7	5.0	5.3
	check	8.8	7.3	5.3	4.7
Monopoly	Mon 4621	6.7*	6.7	6.0	6.7
	check	8.9	7.7	6.7	7.0
Mosa	Mon 4621	6.1*	6.0	6.3	6.0
	check	8.2	7.0	7.3	7.0

(continued)

- 69 -

		Height ^l	Qual	.ity ²	Dollar Spot ³
Cultivar	Treatment	5/31 4 WAT	5/25 3 WAT	6/21 7 WAT	7/25 11 WAT
NJ 735	Mon 4621	6.2*	6.7	5.0	6.0
	check	8.5	8.0	6.3	6.0
Nugget	Mon 4621	5.7	5.3	3.3	3.0
	check	6.8	6.0	3.7	3.3
N535	Mon 4621	5.4*	5.3*	5.3	5.7
	check	7.6	6.7	6.3	5.7
Parade	Mon 4621	6.8*	5.7*	6.0	7.3
	check	9.4	7.0	6.3	7.0
Piedmont	Mon 4621	6.8*	3.3*	5.0*	6.7
	check	8.5	4.7	6.3	7.3
Plush	Mon 4621	5.9*	5.7	6.3	6.7
	check	7.7	6.7	7.0	7.3
PSU 150	Mon 4621	6.2*	5.7*	5.7	6.7
	check	8.4	7.7	7.0	7.3
PSU 173	Mon 4621	6.3*	6.0	6.0	8.0
	check	8.7	7.7	8.0	8.3
PSU 190	Mon 4621	6.5	7.0	4.7	5.7
	check	7.9	7.7	5.7	5.7
P141	Mon 4621	5.6*	5.0	5.3	5.3
	check	7.3	6.3	5.7	5.3
Ram 1	Mon 4621	5.6*	6.0	5.0	7.0
	check	7.6	8.0	6.0	5.7
Rugby	Mon 4621	6.2*	7.3	5.3	6.0
	check	8.4	7.3	5.7	6.0
S. D. Common	Mon 4621 check	7.4 9.4	3.3	5.3	6.3 7.0

(continued)

		Height	Qual	.ity ²	Dollar Spot ³
Cultivar	Treatment	5/31 4 WAT	5/25 3 WAT	6/21 7 WAT	7/25 11 WAT
S-21	Mon 4621	6.9*	4.0	5.0	5.3
	check	9.0	5.3	5.7	6.3
SH-2	Mon 4621	6.3*	6.3*	5.7	7.0
	check	8.7	7.7	5.7	6.3
Shasta	Mon 4621	6.4*	7.0	5.3	4.7
	check	8.8	7.7	6.0	5.3
SV-01617	Mon 4621	6.0*	6.3	5.3	6.0

9.1

5.7*

7.7

6.7*

8.3

5.8*

8.6

6.8

8.2

7.0*

8.6

5.4

7.3

5.9*

9.0

6.9

7.7

6.3*

8.6

7.0

6.7

7.7

7.0*

8.3

6.7

6.0

7.0

4.0*

5.7

5.0

5.7

3.0*

4.7

5.7

6.3

7.0

7.3

7.3

6.0

4.7

5.7

3.7

5.7

5.7

6.3

6.3

7.0

5.7

6.3

6.0

7.0

5.7

6.3

5.7

6.0

6.0

6.3

6.3

4.7

5.0

4.0

5.3

6.0

7.0

6.3

6.0

6.0

6.3

7.0

7.3

7.0

7.3

6.0

5.0

5.3

5.3

Sydsport

Touchdown

Trenton

Vanessa

Vantage

Victa

Wabash

Welcome

WW AG 463

check

Mon 4621

Mon 4621

check

Mon 4621

check

Mon 4621

Mon 4621

Mon 4621

Mon 4621

check

Mon 4621

Mon 4621

check

check

check

check

check

check

(continued)

- 71 -

		Height	Qual	ity ²	Dollar Spot
Cultivar	Treatment	5/31 4 WAT	5/25 3 WAT	6/21 7 WAT	7/25 11 WAT
WW AG 478	Mon 4621	5.1*	5.3	6.0	6.3
	check	6.6	5.7	7.3	5.7
WW AG 480	Mon 4621	6.1*	6.3*	5.3	5.7
	check	8.8	7.7	6.0	6.0
1528T	Mon 4621	6.0	5.3	6.7	6.3
(Midnight)	check	7.0	5.7	7.3	6.7
225	Mon 4621	6.6*	6.3	5.3	5.7
	check	8.3	7.3	6.3	5.7
239	Mon 4621	6.1*	6.3	5.0	6.0
	check	8.8	7.3	5.3	6.3
243	Mon 4621	5.9*	4.7	5.0	6.7
	check	8.3	5.3	5.3	6.7

Height is measured in centimeters.

²Quality evaluations are made on a 1-9 scale where 9 = excellent turfgrass quality and 1 = very poor turfgrass quality. Evaluations were made 3 and 7 weeks after treatment (WAT).

³Disease evaluations are made on a 1-9 scale where 9 = no visible evidence of disease and 1 = complete necrosis. Evaluations were made 11 weeks after treat-ment (WAT).

*Means are significantly different at the 0.05 level as determined by a T test of mean pairs.

THE USE OF GROWTH RETARDANTS ON TALL FESCUE

T. W. Fermanian, J. E. Haley, and D. J. Wehner

INTRODUCTION

Interest has increased in the use of growth retardants on sites where frequent mowing is not possible due to restricted budgets or hazardous mowing conditions. Tall fescue is the primary turf used in parks, playgrounds, and roadways where low maintenance is the key consideration. Growth retardants are needed that will control tall fescue growth and seedhead production while maintaining sufficient turf quality on low maintenance sites. The object of this study was to test several growth retardants to determine their potential for use on tall fescue.

METHODS AND MATERIALS

Among the products tested were Glean and DPX T6376 at rates of 0.125, 0.25, and 0.5 oz ai/A. Both are DuPont chemicals. Glean is registered for use in wheat and DPX T6376 is still being tested experimentally. Embark was tested at 3.0 and 4.0 oz ai/A alone and in combination with Glean or DPX T6376 at .25 oz ai/A. The Eli Lilly product EL-500 was tested at .75 lb ai/A. All materials were applied in a 0.1% v/v solution of the surfactant X-77. The plots measuring 3 x 10 feet were treated on April 21, 1983. The tall fescue was not mowed. The test was monitored for turf quality, growth retardant phytotoxicity, seedhead suppression and control of turf growth and seedhead height.

RESULTS

Ratings of leaf blade injury were taken weekly for a period of 10 weeks after treatment. Phytotoxicity ratings indicated significant injury to all treatments for the first five weeks, except for the EL-500 treated plots. Embark treated turf, at either rate, recovered from any injury after a five week period. The recovery of the DPX T6376 and Glean treated plots was slower with recovery beginning seven weeks following treatment. Phytotoxicity ratings are shown in Table 1.

Height measurements were made on all plots, 18 and 33 days following treatment (Table 2). Significant reduction in height was found for all retarddant treatments as compared to the control. This reduction ranged from 35 to 70 percent.

The percentage of seedheads that developed was also measured and is reported in Table 3. All growth retardants, with the exception of EL-500, provided excellent seedhead control. EL-500 treated plots, while showing a significant reduction in seedheads, showed poor seedhead control. The best uniformity of seedhead control was found with the two Embark treatments. While the Embark, Glean or DPX T6376 combination treatments showed excellent seedhead control, the injury levels to the grass was unacceptable. Results of this study would indicate that while Glean and DPX T6376 are effective in reducing the height of tall fescue and preventing the development of seedheads, they are quite rate sensitive and significant injury can occur with over application. In general, all combinations of Glean or DPX T6376 and Embark caused an unreasonable amount of injury to the turf. The Embark treated plots showed the greatest seedhead reduction and growth control with the least amount of injury. The phytotoxicity of plant growth retardants to a tall fescue turf.¹ Table 1.

	кате					Phyt	oxicity					
Material o	z ai/A	4/29 1 WAT	5/6 2 WAT	5/12 3 WAT	5/18 4 WAT	5/26 5 WAT	6/1 6 WAT	6/7 7 WAT	6/13 8 WAT	6/22 9 WAT	7/1 10 WAT	
Glean 0	. 125	d7.7b	6.0cd	6.30	6.00	6.00	8.0b	9.0a	9.0a	9.0a	9.0a	1
Glean 0	. 25	7.7b	6.3c	6.0c	6.0c	5.0d	6.0c	8.0b	9.0a	8.7a	9.0a	
Glean 0	•5	7.0cd	5.3de	5.0d	5.3cd	4.0e	3.3d	4.3c	5.7b	5.7b	7.7bc	
DPX T6376 0	.125	7.7b	6.0cd	6.0c	5.3cd	4.0e	2.7de	4.3c	5.3b	5.7b	8.7ab	
DPX T6376 0	.25	7.7b	6.3c	4.7de	4.3e	3.0fg	2.0e-g	2.3de	2.7d	3.3c	4.3e	
DPX T6376 0	•5	7 7b	6.0cd	4.3ef	4.0e	2.79	1.3gh	1.7ef	1.0e	1.7d	3.3e	
Glean + 0	. 25	6.7d	5.0e	5.0d	5.3cd	4.0e	2.3ef	3.0d	4.0c	5.3b	6.7cd	
Embark 3	. 0.											
Glean + 0	.25	6.7d	5.0e	4.7de	4.7de	3.3f	1.7f-h	2.7d	3.3cd	4.0c	6.3d	
Embark 4	•0											
DPX T6376 + 0	.25	7.0cd	6.0cd	4.0f	3.0f	2.0h	1.0h	1.0f	1.0e	1.0d	1.3f	
Embark 3	•0											
DPX T6376 + 0	.25	6.7d	5.3de	4.0f	3.0f	2.0h	1.0h	1.0f	1.0e	1.0d	1.0f	
Embark 4	• 0											
Embark 3	• 0	7.3bc	6.7bc	7.3b	7.7b	7.7b	8.7ab	9.0a	9.0a	9.0a	9.0a	
Embark 4	•0	7.7b	7.3b	7.0b	7.3b	7.7b	8.7ab	9.0a	9.0a	9.0a	9.0a	
EL-500 0	.75 lb	9.0a	9.0a	9.0a	9.0a	9.0a	8.3ab	9.0a	9.0a	9.0a	9.0a	
	ai/A											
Control	1	9.0a	9.0a	9.0a	9.0a	9.0a	9.0a	9.0a	9.0a	9.0a	9.0a	

significantly different at the 0.05 level as determined by Fisher's Least Significant Difference test.

²Phytotoxicity ratings are made on a scale of 1-9, where 9 = no visible injury to the turf and 1 = completenecrosis. The evaluations were made 1 to 10 weeks after treatment (WAT).

	Rate	Height	(cm.) ²	Quality ³
Material	oz ai/A	18 Days	33 Days	6/1
Glean	0.125	11.5c-e	12.8cd	7.0a
Glean	0.25	11.4c-e	11.3cd	5.7bc
Glean	0.5	12.3c-e	11.6cd	3.3d
DPX T6376	0.125	11.8c-e	11.6cd	2.7de
DPX T6376	0.25	11.2de	11.0cd	2.3ef
DPX T6376	0.5	11.7c-e	10.3d	1.7fg
Glean +	0.25	10.9e	10.9cd	2.3ef
Embark	3.0			
Glean +	0.25	11.6c-e	11.3cd	1.7fg
Embark	4.0			
DPX T6376 +	0.25	11.1e	11.0cd	1.3g
Embark	3.0			
DPX T6376 +	0.25	11.5c-e	10.4d	1.0g
Embark	4.0			
Embark	3.0	13.3c-e	13.9cd	7.7a
Embark	4.0	13.6cd	14.3c	7.3a
EL-500	0.75 lb	17.0b	22.3b	6.0b
	ai/A			
Control		23.3a	34.3a	5.0c

Table 2. Height measurements of tall fescue 18 and 33 days following treatment and quality evaluation 39 days following treatment with plant growth retardants.¹

¹All values represent the mean of 3 replications. Means in the same column with the same letter are not significantly different at the 0.05 level as determined by Fisher's Least Significant Difference test.

 2 Height measurements are taken as centimeters 18 and 33 days after treatment.

³Quality evaluations are made on a 1-9 scale where 9 = excellent turfgrass quality and 1 = very poor turfgrass quality. For an unmowed tall fescue stand quality includes turf height and the number of seedheads present. Quality ratings were made 6 weeks after treatment.

	Rate	% Seedheads ²	Seedhead Height 3
Material	oz ai/A	5/25	(cm)
Glean	0.125	8.3c	38.1bc
Glean	0.25	5.0d	37.3bc
Glean	0.5	3.0de	33.4c
DPX T6376	0.125	2.7ef	33.1c
DPX T6376	0.25	0.7fg	32.6c
DPX T6376	0.5	0.7fg	
Glean +	0.25	0.0g	
Embark	3.0		
Glean +	0.25	0.0g	
Embark	4.0		
DPX T6376	0.25	0.0g	
Embark	3.0		
DPX T6376	0.25	0.0g	
Embark	4.0		
Embark	3.0	1.3e-g	
Embark	4.0	1.3e-g	38.0bc
EL-500	0.75 lb	76.7b	44.6b
	ai/A		
Control		100.0a	65.6a

Table 3. Percent seedheads and seedhead height in a tall fescue turf treated with various plant growth retardants.¹

¹All values represent the mean of 3 replications. Means in the same column with the same letter are not significantly different at the 0.05 level as determined by Fisher's Least Significant Difference test.

²Percent seedhead evalutations reflect the percent of the plot that is covered with seedheads. Evaluation was made 5 weeks after treatment.

³Seedhead height in cm reflects the height of seedheads in plots containing seedheads.

1983 TURFGRASS INSECT SITUATION IN ILLINOIS

Roscoe Randell

A mild winter ahead of a cold, late spring allowed some insects which do not overwinter in Illinois to survive, and also delayed some spring and summer insect activity.

Sod Webworm - This insect successfully overwintered under winter snow cover and above average winter soil temperatures in some areas of the state. Visible webworm damage appeared in April and May. First generation moth flight in June was light probably due to diseased larvae.

Annual White Grub - Adult emergence was delayed about 5 to 7 days with peak egg laying occurring in central Illinois form July 11 to 14. Most turfgrass areas at that time were deficient in soil moisture reducing egg laying. Japanese beetle adult activity continued to increase in the counties bordering the eastern edge of the state from Lake to Edgar County.

Black Turfgrass Ataenius - The beetles were a week late in egg laying and larval numbers were less than some past years.

Black Cutworm - This insect usually migrates into the state in April and May as a moth to lay eggs on green areas at that time. Migration was light this spring but many larvae survived the mild winter climate to reappear as large cutworms in May.

Bluegrass Billbug and Chinchbug - Some scattered reports of these two turfgrass pest have been received but there was no widespread activity.

INSECTICIDES FOR TURFGRASS INSECTS

There is now an adequate number of good turfgrass insecticides. Diazionon, Dursban, trichlorfon (Proxol or Dylox), Oftonol, Turcam, plus Sevin, and malathion for certain uses. Oftanol, both granular and liquid concentrate, has received a federal label for use on turfgrasses. When using any insecticide, timing of application is still necessary for the insecticide to be effective against a certain turfgrass insect pests.

PLANT PATHOLOGY RESEARCH

H. T. Wilkinson

The new turfgrass pathology research program completed its first full year of research during 1983. Several areas of research have been started and results are promising. With only one year of field data, the final analyses of this research is not possible at this time, but will be available in 1984. A brief description of the research program in progress will comprise the remainder of this progress report.

A major addition to the turfgrass pathology program is Mr. Robert Avenius as an Assistant Plant Pathologist. Mr. Avenius is a native of New York and received a B.S. degree in pest management and an M.S. degree in plant pathology from the University of Wisconsin, Madison, Wisconsin. Mr. Avenius also has considerable working experience in golf course operations and was a sod farm manager in Washington State.

RECOVERY OF BENTGRASS (AGROSTIS palustris) INFECTED WITH SCLEROTINIA homoeocarpa

The rate, extent and longevity of bentgrass recovery from infection by S. homoeocarpa was measured following combined treatments of fungicides and nitrogen fertilizers. The objective of this research is to establish a program to reduce the development of dollar spot and allow the grass plants to recover to a high quality turf. The optimum program should reduce chemical rates and have a reduced effect on the general soil microorganisms. To date, results indicate that bentgrass turf, with initial disease development of 30 - 40% (area) of dollar spot, can fully recover in 2 - 3 weeks with combined applications of 0.2 lb N/1000 sq ft and fungicides applied at less than one fourth the recommended rate for the therapeutic use. While additional research is necessary, I am optimistic that integrating disease control practices will both reduce disease effectively and promote a strong turfgrass ecosystem that will itself act to reduce future disease development.

INTERFACING OF SOD AND SOIL

An extensive and long term research program has started which is examining the factors involved with the interfacing of sod with Illinois soils. Using an apparatus that measures the root strength of laid sod, several questions are being addressed which could result in recommendations for establishing lasting sodded lawns. For example, is it more useful to use mineral sod on some soils and peat sod on other soils? Does the age of sod affect its ability to root? How does the sod temperature affect sod interfacing? This research will require a minimum of three years in order to establish sufficient information upon which recommendations can be offered.

DISEASE ETIOLOGIES

Four diseases are currently under investigation to determine their etiology.

Yellow ring of Poa pratensis is now known to be caused by <u>Trechispora</u> alnicola. This pathogen continues to be a problem in bluegrass turf older than 2 years and heavily thatched. Chemical and biological agents are being explored for their effectiveness in reducing the incidence and severity of this disease.

"Zoysia patch", a very new and unfamiliar disease of <u>Zoysia</u> japonicum occurs in the Mississippi valley area bordering southwestern Illinois. Research is being conducted to establish the cause of the disease and develop an effective control.

A "new" disease has appeared on <u>Poa</u> annua in Illinois. The causal agent has been isolated but, it has not been conclusively identified. Research is being conducted to determine the conditions under which this disease develops.

The fourth disease under investigation is an unknown blight on P. pratensis, first observed in Long Island, N.Y. The causal organism has been isolated but not definitively identified.

BIOLOGICAL CONTROL OF GRASS PATHOGENS

Pythium and Gaeumannomyces species which attack various grass species are antagonized by bacteria that inhabit the soil. These bacteria are being investigated for their potential use as control agents for these pathogens. This work is slow but could result in lasting, safe and inexpensive controls for these serious pathogens of turf.

WEATHER DATA FOR URBANA STATION

DATE	TEMPER MAX	ATURE MIN	GRA MAX	SS MIN	MAX	DIL MIN	PRECIPITATION (INCHES)	RELATIVE MAX	HUMIDITY MIN	DEW
01APR83 02APR83 05APR83 05APR83 05APR83 06APR83 07APR83 07APR83 10APR83 11APR83 12APR83 15APR83 15APR83 15APR83 15APR83 15APR83 20APR83 21APR83 22APR83 22APR83 25APR83 25APR83 25APR83 26APR83 27APR83 27APR83 26APR83 27APR83 26APR83 26APR83 27APR83 26APR83 26APR83 27APR83 26APR83 27APR83 26APR83 27APR83 26APR83 27APR83 26APR83 27APR83 27APR83 26APR83 27APR8	5018008258403116388310352488898893	41 46 333 448 41 37 41 7 41 7 41 3348 41 22909 322226 47 0225 84 49	417 447 440 444 447 447 50 67 535 555 550 55 550 55 56 55 56 55	3444434444444444443344437444445555	444444555499706339199882302690879	4444444444444430333445524555555555555555	0 1.03 0.14 0 0.22 0.19 0.02 0.58 0.2 0 0.49 1.15 0 0.04 0 0.04 0 0 0 0 0 0 0 0 0 0 0 0 0	100 100 100 100 100 100 100 100 100 100	84 96 870 784 82 76 88 78 88 75 76 76 76 76 76 76 76 76 76 76 76 76 76	NO DEW NO DEW HEAVY NO DEW NO DEW NO DEW NO DEW NO DEW NO DEW NO DEW NO DEW LIGHT HODERATE LIGHT HODERATE NO DEW NO DEW NO DEW NO DEW NO DEW
TOTAL AVERAGE	54,6	39,3	49.2	43.3	53	45,1	5,55	95,8	62	

ACCUMULATIVE TOTAL

11,62

01MAY83 63 50 57 54 56 53 0.19 100 98 NO DI 02MAY83 68 57 56 54 60 58 1.97 100 76 NO DI 03MAY83 60 43 61 52 66 56 0.12 100 74 NO DI 04MAY83 53 41 53 49 58 51 0 100 68 05MAY83 53 41 53 49 58 51 0 100 68 05MAY83 53 50 59 46 70 50 0 98 42 NO DI 06MAY83 77 62 60 55 70 54 0 88 40 NO DI 07MAY83 73 40 65 55 65 50 0 100 32 LIGHT 10MAY83 70 48 60 52 73 55 0 76 26 LIGHT 12MAY83 79<	TEN MA	IVE HUMIDITY DEW MIN
25MAY83 25 57 67 52 77 59 0 94 30 LIGH 26MAY83 67 41 67 41 73 60 0 100 40 LIGH 26MAY83 67 41 67 41 73 60 0 100 40 LIGH 27MAY83 65 45 60 56 75 55 0 100 39 28MAY83 71 49 64 58 71 61 0.68 100 42 WET 29MAY83 70 57 60 58 68 62 0 100 40 MODEI 30MAY83 71 46 64 57 71 59 0 100 40 MODEI 31MAY83 65 48 59 56 66 58 0.03 100 50 MODEI	AY83 6 AY83 6 AY83 6 AY83 6 AY83 7 AY83 6 AY83 7 AY83 7 AY	D 98 NO DEW D 76 NO DEW D 74 NO DEW D 39 NO DEW 40 NO DEW 40 NO DEW 40 NO DEW 0 65 LIGHT 32 LIGHT 34 LIGHT 35 HEAVY 0 65 46 HODERATE 0 88 0 68 0 74 0 66 0 74 0 66 0 74 0 74 0 74 0 74 0 74 0 74 0 74 0 74 0 74 0 74 0 74 0
TOTAL 5.56 AVERAGE 67.5 49 61.1 53.9 67.1 56 96.7 53	AL RAGE 6	.7 53

ACCUMULATIVE TOTAL

17,18

WEATHER DATA FOR URBANA STATION

DATE	TEMPE	RATURE MIN	SOI GRA MAX	L TEM SS MIN	PERA Si Max	TURE DIL MIN	PRECIPITATION (INCHES)	RELATIVE	HUMIDITY MIN	DEW
01 JUN83 02 JUN83 03 JUN83 04 JUN83 06 JUN83 06 JUN83 08 JUN83 09 JUN83 09 JUN83 10 JUN83 11 JUN83 12 JUN83 14 JUN83 15 JUN83 15 JUN83 16 JUN83 17 JUN83 18 JUN83 20 JUN83 20 JUN83 22 JUN83 23 JUN83 25 JUN83 26 JUN83 26 JUN83 27 JUN83 28 JUN83 30 JUN83 30 JUN83	60 70 66 71 79 78 80 85 85 87 80 85 85 85 85 85 85 85 85 85 85 85 85 85	44 55 58 57 45 58 57 45 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 55	585 59 66 66 67 69 77 12 77 87 74 27 74 77 80 23 80 80 23 80 80 80 80 80 80 80 80 80 80 80 80 80	54 558 558 560 558 662 558 662 558 662 558 662 558 662 558 662 558 662 558 662 558 662 558 662 558 662 558 662 558 662 558 566 627 7777777777777777777777777777777	629 657 777 777 88 88 88 88 88 88 88 88 88 88	575 63 25 57 8 2 5 5 6 6 5 7 7 7 7 7 7 6 7 1 6 7 7 7 7 7 7 7 7 7 7	0 0 1.2 0.1 0.13 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} 100\\ 95\\ 100\\ 100\\ 100\\ 100\\ 100\\ 100\\ 100\\ 92\\ 94\\ 100\\ 100\\ 98\\ 100\\ 100\\ 100\\ 100\\ 100\\ 100\\ 100\\ 10$	60 40 80 60 50 60 34 32 40 40 34 32 40 40 34 50 440 54 40 54 40 54 40 54 40 54 40 54 60 60 60 60 60 60 60 60 60 60 60 60 60	LIGHT NO DEW NO DEW LIGHT LIGHT LIGHT NO DEW NO DEW NO DEW NO DEW NO DEW NO DEW NO DEW NO DEW NO DEW NO DEW LIGHT MODERATE LIGHT LIGHT NO DEW NO DEW NO DEW
TOTAL AVERAGE	82	60,5	72,4	65.3	81	68	9.2	98,1	49,2	
ACCUMULA	TIVE TO	TAL					26,38			
DATE	TEMPE MAX	RATURE	SOI GRA MAX	L TEM SS MIN	IPERA S MAX	TURE DIL MIN	PRECIPITATION (INCHES)	RELATIVE	HUMIDITY MIN	DEW

DATE	MAX	MIN	MAX	MIN	MAX	MIN	(INCHES)	MAX	MIN	D.T.M
01.JUL 83 02.JUL 83 03.JUL 83 04.JUL 83 05.JUL 83 07.JUL 83 07.JUL 83 09.JUL 83 10.JUL 83 11.JUL 83 12.JUL 83 13.JUL 83 15.JUL 83 15.JUL 83 16.JUL 83 17.JUL 83 17.JUL 83 17.JUL 83 20.JUL 83 21.JUL 83 22.JUL 83 23.JUL 83 25.JUL 83 25.JUL 83 26.JUL 83 27.JUL 83 26.JUL 83 29.JUL 83 30.JUL 83 30.JUL 83 31.JUL 83	84 88 90 86 77 74 85 88 90 91 90 91 90 91 90 91 92 91 92 92 93 94 88 97 98 88 97 91 95 97 98 88 97 91 97 93 97 97 97 97 97 97 97 97 97 97 97 97 97	74 69 72 60 51 55 55 64 65 70 72 67 70 72 97 73 70 82 67 58 70 72 67 73 70 82 67 58 70 72 70 70 70 70 70 70 70 70 70 70 70 70 70	77 78 79 77 76 76 76 76 78 79 79 80 80 80 79 81 82 84 83 84 84 83 84 84 83 84 84 83 85	74 773 74 770 716 667 722 777	84 91 89 80 80 80 80 80 80 80 80 80 80 95 97 97 97 97 97 97 97 97 97 97 97 97 97	756 882 700 773 882 700 773 882 882 882 882 885 885 885 885 885 885	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} 100\\ 100\\ 100\\ 100\\ 100\\ 100\\ 100\\ 100$	67 80 80 80 74 50 74 44 44 46 55 55 55 58 58 54 57 42 45 56 55 54 55 54 55 54 55 55 55 55 55 55 55	HEAVY LIGHT NO DEW MODERATE MODERATE MODERATE MODERATE LIGHT LIGHT LIGHT LIGHT LIGHT LIGHT LIGHT LIGHT LIGHT NO DEW NO DEW NO DEW NO DEW NO DEW NO DEW NO DEW
TOTAL AVERAGE	89.2	2 67,5	80,5	73,8	91.2	78,5	1,68	98.8	55	

ACCUMULATIVE TOTAL

WEATHER DATA FOR URBANA STATION

DATE	TEMPERA MAX M	TURE	SOIL GRAS	TEP SS NIN	IPERATU SOJ MAX 1	JRE [L fIN	PRECIPITATION (INCHES)	RELATIVE	HUMIDITY	DEW
01AU683 02AU683 03AU683 05AU683 05AU683 05AU683 06AU683 07AU683 08AU683 10AU683 10AU683 11AU683 11AU683 12AU683 15AU683 15AU683 15AU683 15AU683 22AU683 22AU683 23AU683 23AU683 25AU683 25AU683 25AU683 25AU683 25AU683 27AU683 29AU683 30AU683 30AU683	90 884 885 887 95 887 885 887 885 887 885 887 885 887 885 887 885 887 885 887 885 887 885 887 885 887 885 887 885 887 885 887 885 887 885 887 887	63 64 64 72 69 66 66 65 66 66 66 66 66 66 66 77 77 77 77 77 77	83 82 82 81 79 81 82 80 76 85 80 76 85 80 82 781 81 82 80 85 80 82 781 83 80 81 82 80 82 781 80 82 781 80 82 78 80 82 78 80 82 78 80 82 80 78 80 82 80 78 80 80 78 80 80 78 80 80 78 80 80 78 80 80 80 78 80 80 80 80 80 80 80 80 80 80 80 80 80	564774556757752217241224374778775455556555	88 91 93 92 85 91 94 95 92 95 92 95 82 89 99 92 43 88 99 92 43 88 99 92 43 88 99 92 43 88 99 92 43 88 92 92 88 92 92 92 92 92 92 92 92 92 92 92 92 92	78 776 777 81 81 81 81 81 81 81 81 81 81 82 75 86 77 77 77 97 66 84 77 88 81 80 81 82 75 88 77 77 86 84 78 80 81 81 81 82 75 80 81 81 81 81 82 75 80 81 81 81 81 81 81 81 82 75 80 81 81 81 81 81 81 81 81 81 81 81 81 81	0 0 0,36 0 0 0,4 0 0 0,4 0 0 0,4 0 0 0,1 85 0 0 0,14 0 0,26 0,52 0,59 0 0	$\begin{array}{c} 100\\ 100\\ 100\\ 100\\ 100\\ 100\\ 100\\ 100$	60 648 52 54 87 6 54 89 0 7 6 54 54 54 54 54 54 54 54 54 55 48 5 54 89 0 0 7 0 4 54 55 4 55 4 55 4 55 4 55 4 5	LIGHT LIGHT LIGHT LIGHT HODERATE LIGHT LIGHT LIGHT NO DEW NO DEW NO DEW NO DEW NO DEW LIGHT MODERATE NO DEW LIGHT NO DEW LIGHT NO DEW LIGHT NO DEW LIGHT NO DEW LIGHT NO DEW LIGHT MODERATE HEAVY MODERATE MODERATE
TOTAL AVERAGE	87,7	67.1	80,4	73.	5 90.5	78,5	4,12	100	64.7	
ACCUMULAT	TIVE TOTA	AL.					32,18			
DATE	TEMPERA MAX M	ATURE 11N	SOI GRA MAX	L TEN SS MIN	MPERATI SO MAX	URE IL MIN	PRECIPITATION (INCHES)	RELATIVE MAX	HUMIDITY MIN	DEW
015EP83 025EP83 035EP83 055EP83 055EP83 065EP83 075EP83 075EP83 105EP83 125EP83 135EP83 145EP83 155EP83 155EP83 165EP83 175EP83 205EP83 225EP83 225EP83 255EP83 255EP83 255EP83 255EP83 255EP83 255EP83 255EP83 255EP83 255EP83 265EP83 255EP83 255EP83 265EP83 255EP83 265EP83 275EP8	83 86 87 90 90 92 92 92 92 92 92 92 92 92 92 92 92 92	64 60 56 53 55 55 55 55 55 55 55 55 55	73 76 79 77 75 75 72 77 77 77 77 77 77 77 77 77 77 77 77	$\begin{array}{c} 72\\ 71\\ 72\\ 71\\ 70\\ 67\\ 69\\ 69\\ 66\\ 70\\ 68\\ 65\\ 76\\ 60\\ 55\\ 52\\ 25\\ 55\\ 58\\ 59\\ 61\\ 2\end{array}$	868 878 878 888 887 888 888 888 888 888	75 79 72 78 77 78 77 74 68 77 74 66 77 68 52 52 68 55 52 54 60 62 66 55 52 55 40 62 66 66 66	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100 100 100 100 94 95 100 100 100 100 100 100 100 100 100 10	70 62 50 46 50 44 50 31 34 40 40 40 40 40 40 87 30 86 50 86 85 100 91 88 90 90 88 88 88 88	HEAVY MDDERATE MDDERATE LIGHT MDDERATE LIGHT MDDERATE NO DEW NO DEW NO DEW NO DEW NO DEW NO DEW NO DEW NO DEW MDDERATE LIGHT MODERATE LIGHT MODERATE LIGHT MODERATE LIGHT MODERATE LIGHT MODERATE LIGHT LIGHT LIGHT
TOTAL AVERAGE	79.6	55.3	71.4	65	79.4	67.2	0.63	98,4	65.8	

ACCUMULATIVE TOTAL

DATE	TEMPER/ MAX	ATURE MIN	SOII GRAS	TEMI SS 11N	PERATI SO: MAX I	URE IL MIN	PRECIPITATION (INCHES)	RELATIVE	HUMIDITY MIN	DEW
010CT83 020CT83 030CT83 050CT83 050CT83 050CT83 070CT83 070CT83 070CT83 100CT83 110CT83 120CT83 130CT83 140CT83 150CT83 150CT83 160CT83 170CT83 200CT83 220CT83 220CT83 240CT83 250CT83 250CT83 250CT83 250CT83 260CT83 270CT83 260CT83 270CT83 270CT83 260CT83 270CT8	82 84 87 70 77 79 79 63 80 76 54 60 77 2326662557 65306 60 760 60	42 49 67 49 54 43 66 44 45 41 00 75 55 44 44 49 09 54 33 54 44 48	71 70 70 78 66 66 66 66 66 66 66 55 55 55 55 55 55	$\begin{array}{c} 62\\ 62\\ 63\\ 69\\ 60\\ 55\\ 55\\ 55\\ 55\\ 55\\ 55\\ 55\\ 55\\ 55\\ 5$	80 77 58 57 57 57 57 57 57 57 57 57 57 57 57 57	66779743353803020605555554466001	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1.42 \\ 0.05 \\ 0.22 \\ 0 \\ 0 \\ 0.02 \\ 0 \\ 0 \\ 0.02 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	96 100 100 90 94 100 100 100 100 100 100 100 100 100 10	56 66 64 80 70 70 60 90 70 72 80 84 47 74 74 74 74 74 80 84 84 100 100 78 100 76 72 72 74 76 72	LIGHT LIGHT NO DEW NO DEW NO DEW NO DEW NO DEW NO DEW HODERATE LIGHT LIGHT LIGHT LIGHT NO DEW NO DEW NO DEW HODERATE MODERATE NO DEW LIGHT MODERATE MODERATE MODERATE MODERATE MODERATE MODERATE NO DEW NO DEW
TOTAL AVERAGE	66.9	45,9	60.1	54,1	63.9	55,4	7,41	97,7	75.6	

ACCUMULATIVE TOTAL

40,22

WEATHER DATA FOR KILBOURNE STATION

DATE	TEMPERAT MAX MI	URE	SDI GRA MAX	L TEM SS MIN	PERAT SO MAX	URE IL MIN	PRECIPITATION (INCHES)	RELATIVE MAX	E HUMIDITY MIN	DEM
01HAY83 02HAY83 03MAY83 05MAY83 05MAY83 06MAY83 06MAY83 07MAY83 09MAY83 09MAY83 10MAY83 10MAY83 11HAY83 11HAY83 15MAY83 15MAY83 15MAY83 15MAY83 20MAY83 20MAY83 25MAY83 25MAY83 25MAY83 25MAY83 25MAY83 25MAY83 25MAY83 25MAY83 26MAY83 27MAY83 20MAY83 30MAY83 30MAY83 31MAY83	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		65577495198088317702431003368771657	55655215207888704498655770667580007376686	65888957767435420290669660508834302201	55329999811443774031224862286677711142240	0 1.48 0.01 0.12 0 0 0.04 0 0 0.04 0 0 0.04 0 0 0.28 0.05 0.18 0 0 0 0 0 0 0 0 0 0 0 0 0	100 100 100 100 82 92 100 88 100 100 100 100 100 100 100 100	74 60 70 56 37 37 34 58 37 34 58 31 320 44 78 62 75 43 62 75 44 62 75 1 33 93 55 13 39 36 41 33 93 55 41 33 93 36 51 33 37 34 4 33 37 34 4 33 37 34 4 33 37 34 4 33 37 34 4 33 37 34 4 33 33 34 4 33 33 34 4 33 33 34 4 33 33	
TOTAL AVERAGE	70,6 50).8	66.9	58,2	71.5	54.9	3,79	97.5	49.7	
ACCUMULAT	IVE TOTAL						5,48 does n	ot includ	e March and	April,
DATE	TEMPERATU MAX MIN	IRE I	SOIL GRAS MAX M	TEMF S IN	ERATI SOJ MAX N	JRE IL IIN	PRECIPITATION (INCHES)	RELATIVE	HUMIDITY MIN	DEW
01 JUN83 02 JUN83 03 JUN83 04 JUN83 05 JUN83 05 JUN83 07 JUN83 09 JUN83 09 JUN83 10 JUN83 11 JUN83 12 JUN83 13 JUN83 14 JUN83 15 JUN83 16 JUN83 17 JUN83 19 JUN83 20 JUN83 21 JUN83 22 JUN83 24 JUN83 24 JUN83 25 JUN83 25 JUN83 26 JUN83 27 JUN83 28 JUN83 29 JUN83 29 JUN83 20 JUN83	61 42 74 55 54 51 77 55 82 57 84 55 84 55 84 56 89 60 82 57 84 56 89 60 92 60 91 60 92 60 93 60 95 70 88 70 95 70 88 70 95 70 88 70 95 87 88 70 95 87 88 70 95 87 88 70 88 70 95 87 88 70 95 87 88 70 88 70 88 70		65 74 87 87 87 87 87 87 87 88 87 88 81 79 87 88 81 79 87 88 81 97 87 88 91 94 93 80 94 87 87 87 88 87 88 87 88 87 88 87 88 87 88 88	6555666667667777667467777788878888888888	8237782558888888888888888888888888888888	564 5457 661 557 777 777 777 777 777 777 777 777 77	0 0.77 0 0.07 0 0 0 0 0 0 0 0 0 0 0 0 0	100 100 100 100 100 100 98 88 98 100 95 78 99 99 100 100 100 100 100 100 100 100 1	62 30 82 70 345 34 32 33 38 35 40 44 45 50 68 32 38 32 38 32 37 39 44 30 38 32 37 39 44 30 68 32 38 32 37 39 39 44 30 57 57 53	MODERATE LIGHT NO DEW NO DEW NO DEW NO DEW NO DEW MODERATE LIGHT
TOTAL AVERAGE	84.9 60	0.9	81	69.9	87,1	68.1	1.78	94.6	42,9	
							7 94 door n	at includ	a March and	April

ACCUMULATIVE TOTAL

7.26 does not include March and April

WEATHER DATA FOR KILBOURNE STATION

DATE	TEMPERATURE MAX MIN	SOIL TEMPERATURE GRASS SOIL MAX MIN MAX MIN	PRECIPITATION RELATIVE HUMIDITY (INCHES) MAX MIN	DEW
01 JUL 83 02 JUL 83 04 JUL 83 05 JUL 83 05 JUL 83 06 JUL 83 07 JUL 83 07 JUL 83 09 JUL 83 10 JUL 83 11 JUL 83 12 JUL 83 14 JUL 83 15 JUL 83 16 JUL 83 17 JUL 83 19 JUL 83 20 JUL 83 22 JUL 83 24 JUL 83 26 JUL 83 27 JUL 83 26 JUL 83 27 JUL 83 29 JUL 83 29 JUL 83 20 JUL 83	93 74 96 79 94 74 93 70 92 58 78 52 89 52 89 58 80 52 89 58 90 72 92 68 97 70 92 58 90 72 95 71 93 70 95 71 93 70 94 74 103 74 100 70 98 63 98 75 98 63 98 74 99 74 99 74	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{smallmatrix} 0 & 82 & 42 \\ 0 & 86 & 43 \\ 0 & 90 & 70 \\ 0 & 25 & 100 & 80 \\ 0 & 0 & 100 & 82 & 55 \\ 0 & 88 & 41 \\ 0 & 88 & 33 \\ 0 & 100 & 38 \\ 0 & 88 & 33 \\ 0 & 88 & 44 \\ 0 & 80 & 44 \\ 0 & 80 & 44 \\ 0 & 80 & 44 \\ 0 & 80 & 44 \\ 0 & 80 & 44 \\ 0 & 88 & 20 \\ 0 & 100 & 50 \\ 0 & 88 & 20 \\ 0 & 100 & 50 \\ 0 & 100 & 100 \\ 0 & 1$	NO DEW NO DEW LIGHT HODERATE LIGHT MODERATE NO DEW NO DEW
ΤΠΤΔΙ			0.38	
AVERAGE	93.2 68.8	90.9 79.4 94.1 77.4	89,7 44,4	
ACCUMULAT	TIVE TOTAL	an seann an an an an ann an an an an an an an	7.64 does not include March a	nd April
DATE	TEMPERATURE MAX MIN	SOIL TEMPERATURE GRASS SOIL MAX MIN MAX MIN	PRECIPITATION RELATIVE HUMIDITY (INCHES) MAX MIN	DEW
01AU683 02AU683 03AU683 04AU683 05AU683 05AU683 07AU683 08AU683	92 65 89 58 88 64 92 68 86 68 90 65 86 64 91 58	90 78 93 72 94 80 99 75 87 82 99 78 94 84 99 77 87 84 89 77 87 84 88 78 83 75 87 75 83 75 88 75 89 79 100 78	0 100 50 0 89 58 0 88 64 0,01 82 38 0 82 50 0 100 45 0 100 60 0 100 55	HEAVY MODERATE HEAVY WET LIGHT

DATE	TEMPER MAX	ATURE MIN	GRA	SS MIN	SO	IL MIN	PRECIPITATION (INCHES)	RELATIVE MAX	HUMIDITY MIN	DEW
01AU683 02AU683 03AU683 05AU683 05AU683 05AU683 05AU683 07AU683 10AU683 12AU683 12AU683 12AU683 12AU683 12AU683 12AU683 12AU683 23AU683 23AU683 23AU683 23AU683	92 89 88 90 86 90 86 90 86 90 86 90 86 96 82 82 82 82 96 82 82 97 80 101 95 92 80 95 92 88 92 88 92 80 82 80 82 80 82 82 82 82 82 82 82 82 82 82 82 82 82	65 58 64 68 68 65 64 68 65 64 65 66 65 66 66 66 66 66 66 66 66 66 67 76 68 67 76 69 56 66 77 70 68 67 72 95 56 61 72 70 66 68 67 70 66 66 86 70 66 66 87 70 66 66 66 76 76 66 66 77 76 66 66 77 76 66 6	904973339555205234257885269756788	78 80 82 84 84 87 55 77 84 88 87 78 88 80 88 80 88 80 88 80 88 80 88 80 88 80 88 80 88 80 80	93 99 99 99 99 88 87 88 1000 98 95 98 90 94 95 95 97 95 95 97 97 95 95 97 97 97 97 97 97 97 97 97 97 97 97 97	72 778 777 778 755 778 81 80 808 808 808 777 69 38 2777 83 778 758 778 778 778 778 778 778 778 778	0 0 0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100 89 88 82 82 100 100 100 84 70 77 90 100 100 89 88 88 80 83 85 88 88 80 83 82 80 80 83 82 80 90 80 84 95 100	50 58 638 50 50 50 50 50 50 50 50 50 50 50 50 50	HEAVY MODERATE HEAVY WET LIGHT LIGHT NO DEW NO DEW LIGHT LIGHT LIGHT NO DEW NO DEW NO DEW HEAVY HEAVY HEAVY HEAVY HEAVY
TOTAL	00 4	45.0	00 4	00 5	07.0		1	00 7	45.7	
HVERHUE	70+0	0.0 1 7	0710	00+0	73:0	77+4		0013		
ACCUMULA	TIVE TOT	AL				8.64 does 1	8.64 does not include March and April			

WEATHER DATA FOR KILBOURNE STATION

DATE	TEMPER	ATURE	SOI GRA	L TEM	SO		PRECIPITATION	RELATIVE	HUMIDITY	DEW
01SEP83 02SEP83	лнл 86 86	60 56	89 91	82 81	90 92	75 75	0 0	90 90	44 40	HEAVY
03SEP83 04SEP83 05SEP83 06SEP83 07SEP83 08SEP83 09SEP83 10SEP83	86 88 94 86 86 95 86 86 95	56 58 65 69 50 70 70	85 84 91 91 89 91 89 83	73 75 74 80 76 78 76	90 888 92 889 889 889 889 889 889 889 889	72 72 72 72 75 74 73 74 74	0 0 0 0 0 0 0	100 100 88 84 78 80 98	50 40 30 40 18 33 45	NO DEW HEAVY LIGHT NO DEW
11SEP83 12SEP83 13SEP83 14SEP83 15SEP83 16SEP83 17SEP83	95 76 82 72 73 62 70	61 58 52 52 54 52 50 50	86 93 91 82 82 74 70	76 77 75 70 70 550	91 91 85 84 68 70	72 71 69 65 65 65	0,75 0,01 0 0 0,11	95 88 90 88 90 100	44 34 38 28 84 55	LIGHT LIGHT HEAVY NO DEW HEAVY
195EP83	93	68	90	60	84	68	0	87	45	LIGHT
205EP83 21SEP83	72	60 39	81 44	60	84 74	51	0.04	90	20 70 28	HEAVY
235EP83	58	33	60 68	47	60 71	53	0	100	42	HEAUY
255EP83 265EP83	67 60	46 54	62 69	57	64 73	55 46	0 0.04	95 90	40 85	HEAVY
27SEP83 28SEP83 29SEP83 30SEP83	79 83 86 85	51 62 55 53	73 76 79 79	52 70 67 68	75 79 83 83	58 64 62 63	00000	89 82 89 89	42 39 35 31	NO DEW NO DEW LIGHT
TOTAL	79.6	54.4	80.1	68	81.5	65.3	0,98	90.8	43.7	
ACCIMULATIVE TOTAL						9,62 does n	not includ	e March an	d April	
			SOI	L TEM	PERATI	URE				
DATE	TEMPER Max	ATURE	gra Max	SS MIN	SD MAX 1	IL MIN	PRECIPITATION (INCHES)	RELATIVE	HUMIDITY	DEW
010CT83 020CT83 030CT83 050CT83 060CT83 060CT83 090CT83 090CT83 100CT83 120CT83 120CT83 120CT83 140CT83 150CT83 150CT83 160CT83 160CT83 200CT83 220CT83 220CT83 230CT83 250CT8	81 81 82 75 73 86 77 86 77 66 51 86 77 55 86 77 55 86 77 55 86 77 55 86 55 55 55 55 55 55 55 55 55 55 55 55 55	433 555 557 408 87 558 557 408 87 558 507 408 87 558 507 408 87 558 509 489 507 409 430 557 507 409 455 557 507 409 455 557 507 400 555 507 507 507 507 507 507 507 507 5	72 70 70 75 72 72 70 70 75 72 70 70 70 70 75 72 70 70 70 75 72 70 70 75 72 70 70 75 72 70 70 75 72 70 70 75 72 70 70 75 72 70 75 75 72 70 75 75 75 70 75 75 70 75 75 70 75 75 70 75 75 70 70 75 70 70 75 70 70 75 70 70 75 70 70 70 75 70 70 70 75 70 70 70 70 70 70 70 70 70 70 70 70 70	62257076663312603255555555555445555 6663312603255555555555555555555555555555555555	$\begin{array}{c} 75\\ 76\\ 77\\ 79\\ 87\\ 87\\ 87\\ 87\\ 87\\ 87\\ 72\\ 77\\ 73\\ 73\\ 65\\ 60\\ 62\\ 66\\ 25\\ 55\\ 55\\ 55\\ 55\\ 55\\ 55\\ 55\\ 55\\ 55$	60 660 625 76 60 655 55 55 55 55 55 55 55 55 55 55 55 55	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100 100 90 100 87 92 77 85 91 93 93 93 100 100 95 85 92 91 100 100 90 100 90 100 90 100 90 100 90 100 90 100 90 90 91 93 93 93 93 93 93 93 93 93 93 93 93 93	35 30 35 42 37 37 37 37 50 38 42 37 37 50 53 84 58 28 87 50 88 58 88 58 88 58 88 58 88 58 88 58 88 58 5	LIGHT NO DEW NO DEW LIGHT ND DEW MODERATE MODERATE HEAVY HEAVY HEAVY HEAVY
21121	and have made and made part of	and the second se	and the second se							
AVERAGE	66	46.8	63.3	56.4	65.4	53.7	1.34	93.5	50.3	

ACCUMULATIVE TOTAL

10.96 does not include March and April